Specifying Proof Systems in Linear Logic with Subexponentials

In the past years, linear logic has been successfully used as a general logical framework for encoding proof systems. Due to linear logic@?s finer control on structural rules, it is possible to match the structural restrictions specified in the encoded logic with the use of linear logic connectives. However, some systems that impose more complicated structural restrictions on its sequents cannot be easily captured in linear logic, since it only distinguishes two types of formulas: classical and linear. This work shows that one can encode a wider range of proof systems by using focused linear logic with subexponentials. We demonstrate this by encoding the system G1m for minimal, the multi-conclusion system, mLJ, and the focused system LJQ*, for intuitionistic logic. Finally, we identify general conditions for determining whether a linear logic formula corresponds to an object-logic rule and whether this rule is invertible.

[1]  Dale Miller,et al.  Forum: A Multiple-Conclusion Specification Logic , 1996, Theor. Comput. Sci..

[2]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[3]  Frank Pfenning,et al.  Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[4]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[5]  Frank Pfenning,et al.  Elf: a language for logic definition and verified metaprogramming , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[6]  Vincent Danos,et al.  The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs , 1993, Kurt Gödel Colloquium.

[7]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[8]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[9]  Dale Miller,et al.  On the Specification of Sequent Systems , 2005, LPAR.

[10]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[11]  Frank Pfenning,et al.  A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[12]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[13]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[14]  Hugo Herbelin Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .

[15]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[16]  Dale A. Miller,et al.  AN OVERVIEW OF PROLOG , 1988 .

[17]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[18]  Gopalan Nadathur,et al.  A Logic Programming Approach to Manipulating Formulas and Programs , 1987, SLP.

[19]  Amy P. Felty,et al.  Specifying Theorem Provers in a Higher-Order Logic Programming Language , 1988, CADE.

[20]  Roy Dyckhoff,et al.  LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.

[21]  Vivek Nigam,et al.  Exploiting non-canonicity in the sequent calculus , 2009 .

[22]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[23]  Shôji Maehara,et al.  Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.

[24]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[25]  Jean-Yves Girard,et al.  On the meaning of logical rules I: syntax vs. semantics , 1998 .

[26]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[27]  Dale Miller,et al.  Logic Programming in a Fragment of Intuitionistic Linear Logic , 1994, Inf. Comput..

[28]  Chuck Liang,et al.  Focusing and polarization in linear, intuitionistic, and classical logics , 2009, Theor. Comput. Sci..

[29]  Elaine Pimentel,et al.  Using Linear Logic to Reason about Sequent Systems , 2002, TABLEAUX.

[30]  Elaine Pimentel LINEAR LOGIC AS A FRAMEWORK FOR SPECIFYING SEQUENT CALCULUS , 2002 .

[31]  Dale Miller,et al.  Algorithmic specifications in linear logic with subexponentials , 2009, PPDP '09.

[32]  Kazushige Terui,et al.  Towards a Semantic Characterization of Cut-Elimination , 2006, Stud Logica.

[33]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[34]  Dale Miller,et al.  Focusing in Linear Meta-logic , 2008, IJCAR.