In-pile tritium release behavior and the post-irradiation experiments of Li4SiO4 fabricated by melting process

[1]  Xin Zhang,et al.  An in-pile experimental loop for the irradiation of tritium breeding ceramics in China Mianyang research reactor (CMRR) , 2021 .

[2]  A. Loarte,et al.  Physics and technology considerations for the deuterium–tritium fuel cycle and conditions for tritium fuel self sufficiency , 2020, Nuclear Fusion.

[3]  R. Knitter,et al.  The HICU PIE results of EU ceramic breeder pebbles: Tritium release properties , 2020 .

[4]  S. Peng,et al.  Improvement of ionization chamber for tritium measurements in in-pile tritium extraction experiments , 2019, Fusion Engineering and Design.

[5]  Myung-Hyun Kim,et al.  Neutronics performance analysis on neutron consumption in a Fusion-Fission Hybrid System for tritium breeding , 2019, Annals of Nuclear Energy.

[6]  Guangming Ran,et al.  Current Progress of Tritium Fuel Cycle Technology for CFETR , 2019 .

[7]  Qingwei Yang,et al.  Overview of the present progress and activities on the CFETR , 2017 .

[8]  S. Peng,et al.  Tritium release in Li 4 SiO 4 and Li 4.2 Si 0.8 Al 0.2 O 4 ceramics , 2016 .

[9]  X. Duan,et al.  Current progress of Chinese HCCB TBM program , 2016 .

[10]  R. Knitter,et al.  Recent Developments of Solid Breeder Fabrication , 2013 .

[11]  U. Fischer,et al.  Reduction of impurities and activation of lithium orthosilicate breeder materials , 2009 .

[12]  R. Knitter,et al.  Tritium release from lithium silicate pebbles produced from lithium hydroxide , 2008 .

[13]  A. J. Magielsen,et al.  In-pile tritium release behaviour of lithiummetatitanate produced by extrusion–spheroidisation–sintering process in EXOTIC-9/1 in the high flux reactor, Petten , 2007 .

[14]  Regina Knitter,et al.  Reprocessing of lithium orthosilicate breeder material by remelting , 2007 .

[15]  M. Nishikawa,et al.  Tritium Release Behavior from Li4SiO4 , 2004 .

[16]  M. Enoeda,et al.  Release behavior of bred tritium from LiAlO2 , 2004 .

[17]  Y. Nishida,et al.  Chemical form of tritium released from solid breeder materials , 2004 .

[18]  H. Kawamura,et al.  In-situ tritium release behavior from Li2TiO3 pebble-bed , 2001 .

[19]  F. Scaffidi-Argentina Tritium and helium release from neutron irradiated beryllium pebbles from the EXOTIC-8 irradiation , 2001 .

[20]  G. Kizane,et al.  Basic study of influence of radiation defects on tritium release processes from lithium silicates , 1997 .

[21]  J. Laan,et al.  EXOTIC-7: Irradiation of ceramic breeder materials to high lithium burnup , 1996 .

[22]  Y. Kawamura,et al.  Formation of water in lithium ceramics bed at hydrogen addition to purge gas , 1996 .

[23]  H. Werle,et al.  Inpile tritium release from ceramic breeder materials in TRIDEX experiments 1–6 , 1991 .

[24]  T. Kondo,et al.  Fabrication, properties, and tritium recovery from solid breeder materials , 1991 .

[25]  O. D. Slagle,et al.  In-situ tritium recovery from Li sub 2 O irradiated in fast neutron flux: BEATRIX-II initial results , 1991 .

[26]  C. Johnson Research and development status of ceramic breeder materials , 1991 .

[27]  E. Roth,et al.  Prospects of ceramic tritium breeder materials , 1989 .

[28]  L. Debarberis,et al.  Tritium release from the various solid breeder materials irradiated in exotic experiments 1, 2 and 3 , 1988 .

[29]  C. Johnson,et al.  Ceramic breeder materials , 1988 .

[30]  Hitoshi Watanabe,et al.  The time dependence of in-situ tritium release from lithium oxide and lithium aluminate (VOM-22H experiment) , 1986 .

[31]  J. Elen,et al.  EXOTIC, an experimental programme on the development of ceramic tritium breeding materials , 1985 .

[32]  H. Nowotny,et al.  Die Kristallstruktur von Li4SiO4 , 1968 .