An Angles-Only Navigation and Control Scheme for Noncooperative Rendezvous Operations

The use of vision sensors for noncooperative rendezvous operations is attractive, especially for microspacecraft, because vision sensors are usually of small size, light weight, and low cost but provide rich information. However, vision-based rendezvous operations are extremely challenging. It is difficult for vision sensors to accurately measure the relative distance between a chaser spacecraft and a noncooperative target. In this paper, we propose a systematic angles-only navigation and control scheme for noncooperative rendezvous operations. The scheme is a hybrid framework that combines offline trajectory planning that integrates observability condition and online trajectory tracking based on nonlinear model predictive control. A navigation filter is used in the online trajectory tracking to estimate the relative motion by using only angle measurements. In the scheme, the chaser spacecraft can closely track the desired trajectory and simultaneously guarantee the estimation accuracy of the navigation filter. This paper provides a general and practical framework for angles-only rendezvous operations and the effectiveness is verified by extensive simulations.

[1]  Ilya V. Kolmanovsky,et al.  Model Predictive Control for Spacecraft Rendezvous and Docking: Strategies for Handling Constraints and Case Studies , 2015, IEEE Transactions on Control Systems Technology.

[2]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[3]  Gabriella Gaias,et al.  Angles-Only Navigation to a Noncooperative Satellite Using Relative Orbital Elements , 2014 .

[4]  Xiuyun Meng,et al.  Multi-objective and reliable control for trajectory-tracking of rendezvous via parameter-dependent Lyapunov functions , 2012 .

[5]  Ming Xin,et al.  Vision-Based Spacecraft Relative Navigation Using Sparse-Grid Quadrature Filter , 2013, IEEE Transactions on Control Systems Technology.

[6]  Taeyoung Lee,et al.  Nonlinear Observability for Relative Orbit Determination with Angles-Only Measurements , 2016 .

[7]  Panfeng Huang,et al.  Coordinated coupling control of tethered space robot using releasing characteristics of space tether , 2016 .

[8]  Ya-zhong Luo,et al.  Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm , 2006 .

[9]  Walter Fichter,et al.  Observability Criteria and Unobservable Maneuvers for In-Orbit Bearings-Only Navigation , 2014 .

[10]  V. Aidala Kalman Filter Behavior in Bearings-Only Tracking Applications , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Haitao Gao,et al.  Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method , 2013 .

[12]  Bing Li,et al.  A universal on-orbit servicing system used in the geostationary orbit , 2011 .

[13]  Zhongli Wang,et al.  A New Approach to Dynamic Eye-in-Hand Visual Tracking Using Nonlinear Observers , 2011, IEEE/ASME Transactions on Mechatronics.

[14]  Sameera S. Ponda,et al.  Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles , 2009 .

[15]  Yangsheng Xu,et al.  Autonomous rendezvous and robotic capturing of non-cooperative target in space , 2009, Robotica.

[16]  Gianmarco Radice,et al.  Ant Colony Algorithms for Two-Impulse Interplanetary Trajectory Optimization , 2006 .

[17]  Ilya Kolmanovsky,et al.  Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering , 2012 .

[18]  R. Wishner,et al.  Utilization of Modified Polar Coordinates for Bearings-Only Tracking , 2001 .

[19]  Huijun Gao,et al.  Sampled-Data Control for Relative Position Holding of Spacecraft Rendezvous With Thrust Nonlinearity , 2012, IEEE Transactions on Industrial Electronics.

[20]  Dezhen Song,et al.  Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation , 2009, IEEE Transactions on Robotics.

[21]  John Leif Jørgensen,et al.  Noncooperative Rendezvous Using Angles-Only Optical Navigation: System Design and Flight Results , 2013 .

[22]  Eric W. Frew,et al.  Trajectory generation for constant velocity target motion estimation using monocular vision , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  Xinwu Liang,et al.  Visual Servoing of Soft Robot Manipulator in Constrained Environments With an Adaptive Controller , 2017, IEEE/ASME Transactions on Mechatronics.

[24]  Rong Xiong,et al.  Stereo Visual-Inertial Odometry With Multiple Kalman Filters Ensemble , 2016, IEEE Transactions on Industrial Electronics.

[25]  Zongxia Jiao,et al.  Adaptive Backstepping Control of Spacecraft Rendezvous and Proximity Operations With Input Saturation and Full-State Constraint , 2017, IEEE Transactions on Industrial Electronics.

[26]  Walter Fichter,et al.  Analytic Optimal Observability Maneuvers for In-Orbit Bearings-Only Rendezvous , 2014 .

[27]  D.C. Woffinden,et al.  Observability Criteria for Angles-Only Navigation , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Jason Schmidt,et al.  Viability of Angles-only Navigation for Orbital Rendezvous Operation , 2010 .

[29]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[30]  David K. Geller,et al.  Navigating the Road to Autonomous Orbital Rendezvous , 2007 .

[31]  Simone D'Amico,et al.  Early Flight Results from the TanDEM-X Autonomous Formation Flying System , 2011 .

[32]  Giovanni B. Palmerini,et al.  Preliminary analysis of visual navigation performance in close formation flying , 2017, 2017 IEEE Aerospace Conference.

[33]  David K. Geller,et al.  Optimal Orbital Rendezvous Maneuvering for Angles-Only Navigation , 2009 .

[34]  Simone D'Amico,et al.  Spaceborne Autonomous Formation Flying Experiment on the PRISMA Mission , 2011 .