The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications

The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of t-cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for t-cores. Several applications are derived, including the "marked hook formula".

[1]  P. Papi,et al.  The Ŵ-orbit of ρ , Kostant ’ s formula for powers of the Euler product and affine Weyl groups as permutations of Z Paola Cellini Pierluigi , 2008 .

[2]  Macdonald identities and Euclidean Lie algebras , 1975 .

[3]  A. Lascoux Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .

[4]  Christine Bessenrodt,et al.  On hooks of Young diagrams , 1998 .

[5]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[6]  B. Kostant On Macdonald's η-function formula, the Laplacian and generalized exponents , 1976 .

[7]  H. Wilf,et al.  A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .

[8]  Dennis Stanton,et al.  An involution for Jacobi's identity , 1989, Discret. Math..

[9]  Dennis Stanton,et al.  CRANKS AND T -CORES , 1990 .

[10]  Lasse Winquist,et al.  An elementary proof of p(11m+6)≡0 (mod 11) , 1969 .

[11]  Roland Bacher,et al.  Hooks and powers of parts in partitions , 2001 .

[12]  Guo-Niu Han,et al.  An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths , 2008, 0804.1849.

[13]  S. Milne An elementary proof of the Macdonald identities for , 1985 .

[14]  B. M. Fulk MATH , 1992 .

[15]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[16]  Guo-Niu Han Discovering Hook Length Formulas by an Expansion Technique , 2008, Electron. J. Comb..

[17]  Igor Pak,et al.  A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..

[18]  Erik Carlsson,et al.  Exts and Vertex Operators , 2008, 0801.2565.

[19]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[20]  Avital Frumkin,et al.  Rim hook tableaux and Kostant's η-function coefficients , 2004, Adv. Appl. Math..

[21]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[22]  Alexander Berkovich,et al.  The BG-rank of a partition and its applications , 2008, Adv. Appl. Math..

[23]  D. Foata,et al.  The Triple, Quintuple and Septuple Product Identities Revisited , 2001 .

[24]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[25]  P. McGinn Missed opportunities. , 2000, Hospitals & health networks.

[26]  Irwin Kra,et al.  On the quintuple product identity , 1999 .

[27]  Jean-Pierre Serre Cours d'arithmétique , 1971 .

[28]  I. G. MacDonald,et al.  Affine root systems and Dedekind'sη-function , 1971 .

[29]  Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra , 2003, math/0309232.

[30]  Hjalmar Rosengren,et al.  Elliptic determinant evaluations and the Macdonald identities for affine root systems , 2006, Compositio Mathematica.

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  Doron Zeilberger,et al.  A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..

[33]  Christian Krattenthaler Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.

[34]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[35]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[36]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[37]  Jeffrey B. Remmel,et al.  A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..

[38]  V. Kats Infinite-dimensioned Lie algebras and Dedekind'sη-function , 1974 .

[39]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[40]  T. Skyrme,et al.  On an Identity Relating to Partitions and Repetitions of Parts , 1982, Canadian Journal of Mathematics.

[41]  A. Hoare,et al.  An Involution of Blocks in the Partitions of n , 1986 .

[42]  D. Stanton,et al.  Cranks andt-cores , 1990 .

[43]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .