Optimal Portfolios with Minimum Capital Requirements

We propose a novel approach to active risk management based on the recent Basel II regulations to obtain optimal portfolios with minimum capital requirements. In order to avoid regulatory penalties due to an excessive number of Value-at-Risk (VaR) violations, capital requirements are minimized subject to a given number of violations over the previous trading year. Capital requirements are based on the recent Basel II amendments to account for the ‘stressed’ VaR, that is, the downside risk of the portfolio under extreme adverse market conditions. An empirical application for two portfolios involving different types of assets and alternative stress scenarios demonstrates that the proposed approach delivers an improved balance between capital requirement levels and the number of VaR exceedances. Furthermore, the risk-adjusted performance of the proposed approach is superior to that of minimum-VaR and minimum-stressed VaR portfolios.

[1]  YUKUN ZHANG Comparing univariate and multivariate models to forecast portfolio value-at-risk , 2011 .

[2]  Defeng Sun,et al.  Correlation stress testing for value-at-risk: an unconstrained convex optimization approach , 2010, Comput. Optim. Appl..

[3]  F. Nogales,et al.  Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk , 2009 .

[4]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[5]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[6]  M. McAleer,et al.  A Decision Rule to Minimize Daily Capital Charges in Forecasting Value-at-Risk , 2009 .

[7]  C. Alexander,et al.  Market risk analysis. Volume IV. Value at risk models , 2009 .

[8]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[9]  Peter Christoffersen,et al.  Value–at–Risk Models , 2009 .

[10]  S. Chib,et al.  Multivariate stochastic volatility , 2009 .

[11]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[12]  G. Kapetanios,et al.  Forecasting Exchange Rates with a Large Bayesian VAR , 2008 .

[13]  Christophe Pérignon,et al.  Diversification and Value-at-Risk , 2008 .

[14]  Michael McAleer,et al.  Single Index and Portfolio Models for Forecasting Value-at-Risk Thresholds * , 2008 .

[15]  Til Schuermann,et al.  Forecasting Economic and Financial Variables with Global VARs , 2007 .

[16]  Timo Terasvirta,et al.  Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model , 2008 .

[17]  D. Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use? , 2008 .

[18]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[19]  Shu Yan,et al.  Mean¿variance portfolio selection with ¿at-risk¿ constraints and discrete distributions. , 2007 .

[20]  Christophe Pérignon,et al.  Do Banks Overstate Their Value-at-Risk? , 2007 .

[21]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[22]  M. McAleer,et al.  Multivariate Stochastic Volatility: A Review , 2006 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[25]  Jón Dańıelsson,et al.  On Time-Scaling of Risk and the Square-Root-Of-Time Rule , 2005 .

[26]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[27]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[28]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[29]  Hong Liu,et al.  An Analysis of Var-Based Capital Requirements , 2003 .

[30]  T. Teräsvirta,et al.  Time-Varying Smooth Transition Autoregressive Models , 2003 .

[31]  R. Engle,et al.  Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns , 2003, SSRN Electronic Journal.

[32]  Kevin Sheppard Multi-step estimation of Multivariate GARCH models , 2003 .

[33]  Enrique Sentana Iváñez Mean-Variance Portfolio Allocation with a Value at Risk Constraint , 2003 .

[34]  Yufeng Han,et al.  Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model , 2005 .

[35]  Y. Tse,et al.  A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model With Time-Varying Correlations , 2002 .

[36]  Philippe Jorion,et al.  How Informative are Value-at-Risk Disclosures? , 2002 .

[37]  Alexandre M. Baptista,et al.  Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis , 2002 .

[38]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[39]  Jeremy Berkowitz,et al.  How Accurate are Value-at-Risk Models at Commercial Banks , 2001 .

[40]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[41]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[42]  Jeremy Berkowitz A Coherent Framework for Stress-Testing , 1999 .

[43]  Paul H. Kupiec,et al.  Stress Testing in a Value at Risk Framework , 1998 .

[44]  F. Longin,et al.  From value at risk to stress testing : The extreme value approach Franc ß ois , 2000 .

[45]  B. Hirtle,et al.  Bank Capital Requirements for Market Risk: The Internal Models Approach , 1997 .

[46]  F. Diebold,et al.  Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think , 1997 .

[47]  Til Schuermann,et al.  Converting 1-Day Volatility to h-Day Volatility : Scaling by is Worse than You Think , 1996 .

[48]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[49]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[50]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[51]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[52]  Matthew Brosnahan,et al.  International convergence of capital measurement and capital standards for banks , 1989 .

[53]  Robert Fildes,et al.  Journal of business and economic statistics 5: Garcia-Ferrer, A. et al., Macroeconomic forecasting using pooled international data, (1987), 53-67 , 1988 .

[54]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[55]  W. Sharpe A Simplified Model for Portfolio Analysis , 1963 .

[56]  E. Robert Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models , 2022 .