Pinning mechanism in electron-doped HTS Nd 1.85 ?> Ce 0.15 ?> CuO 4 − δ ?> epitaxial films

The electrical transport properties of c-axis oriented Nd1.85Ce0.15CuO4 − δ superconducting films have been investigated to analyze the pinning mechanism in this material. The samples were grown on SrTiO3 substrates using the dc sputtering high-pressure technique, whereas a detailed analysis of the structure and local composition of the films has been achieved using high-resolution electron microscopy and x-ray microanalysis. Magneto-resistance and current-voltage measurements, in the temperature range from 1.6 to 300 K and in magnetic field up to 9 T, have been reported. In particular, the anisotropic coefficient defined as the ratio between the parallel upper critical field, H c 2 ∥ ?> ab, and the perpendicular one, H c 2 ∥ ?> c, has been evaluated, pointing out the high anisotropy of this compound. Furthermore, the vortex activation energy as a function of the applied magnetic field, parallel and perpendicular to the CuO2 planes, has been derived and compared with the flux-pinning forces to enlighten the peculiar nature of pinning centers in this material.

[1]  A. Vecchione,et al.  Transport and optical properties of epitaxial Nd1.83Ce0.17Cu04−δ thin films , 2014 .

[2]  A. Vecchione,et al.  Fabrication of superconducting Nd2−xCexCuO4±δ films by automated dc sputtering technique , 2013 .

[3]  A. Nigro,et al.  Depairing current density of Nd2−xCexCuO4−δ superconducting films , 2013 .

[4]  C. Scheuerlein,et al.  Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires , 2013, 1311.6901.

[5]  Hideki Yamamoto,et al.  Emerging superconductivity hidden beneath charge-transfer insulators , 2013, Scientific Reports.

[6]  A. Ivanov,et al.  Upper critical field in electron-doped cuprate superconductor Nd2−xCexCuO4+δ: Two-gap model , 2012, 1212.6118.

[7]  R. Fittipaldi,et al.  Correlation between structural and transport properties in epitaxial films of Nd2 − xCexCuO4 ± δ , 2012 .

[8]  C. Senatore,et al.  Temperature and time scaling of the peak-effect vortex configuration in FeTe 0.7 Se 0.3 , 2012, 1204.5934.

[9]  T. Charikova,et al.  Estimating the coherence length in the electron-doped superconductor Nd2−xCexCuO4+δ , 2010, 1010.4365.

[10]  Yue Wang,et al.  Anisotropic magnetotransport of superconducting and normal state in an electron-doped Nd1.85Ce0.15CuO4−δ single crystal , 2010, 1102.5621.

[11]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[12]  A. Nigro,et al.  Critical currents and pinning forces in Nd 2-x Ce x CuO 4-δ thin films , 2009 .

[13]  L. Alff,et al.  Superconductivity phase diagrams for the electron-doped cupratesR2−xCexCuO4(R=La, Pr, Nd, Sm, and Eu) , 2008, 0805.0978.

[14]  P. Fournier,et al.  Editorial Note: Different roles of cerium substitution and oxygen reduction in transport inPr2−xCexCuO4thin films [Phys. Rev. B75, 024424 (2007)] , 2007 .

[15]  P. Fournier,et al.  Different roles of cerium substitution and oxygen reduction in transport in Pr 2 − x Ce x CuO 4 thin films , 2007 .

[16]  L. Lu,et al.  Phase decomposition and chemical inhomogeneity in Nd 2 − x Ce x CuO 4 ± δ , 2004, cond-mat/0403258.

[17]  R. Greene,et al.  Doping dependence of the upper critical field of electron-dopedPr2−xCexCuO4thin films , 2003 .

[18]  R. Huebener,et al.  Vortex-glass melting transition and scaling behavior in the cuprate superconductor Nd2-xCexCuOy at low temperatures , 2001, cond-mat/0104500.

[19]  M. Naito,et al.  Doping dependence of normal- and superconducting-state transport properties of Nd 2 − x Ce x CuO 4 ± y thin films , 1998 .

[20]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[21]  R. Greene,et al.  Disorder-Induced Transition to Entangled Vortex Solid in Nd-Ce-Cu-O Crystal , 1997 .

[22]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[23]  T. Morishita,et al.  The transport properties of YBa2Cu3O7−χ thin films , 1993 .

[24]  Tinkham Resistive transition of high-temperature superconductors. , 1988, Physical review letters.

[25]  Malozemoff,et al.  Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal: An alternative to the superconducting-glass model. , 1988, Physical review letters.

[26]  D. Dew-Hughes The role of grain boundaries in determining J c in high-field high-current superconductors , 1987 .

[27]  H. Kupfer,et al.  Field dependent change of the critical current density in neutron irradiated A15 superconductors with grain boundary pinning , 1980 .

[28]  蒋好,et al.  Crystal chemistry and structural design of iron-based superconductors , 2013 .

[29]  Qin Meng Metal Insulator Transition , 2010 .

[30]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[31]  W. Buyers,et al.  Phase decomposition and chemical inhomogeneity in Nd , 2022 .