Neural Inverse Optimal Pinning Control of Output Trajectory Tracking for Uncertain Complex Networks with Nonidentical Nodes

This chapter presents the development of a control scheme, we named as neural inverse optimal pinning control to achieve output trajectory tracking on uncertain complex networks with nonidentical nodes. A recurrent high order neural network is used to identify the unknown system dynamics of a small fraction of nodes (pinned ones) and by means of this neural model, an inverse optimal controller is designed to synchronize the whole network at an output desired reference. The proposed controller effectiveness is illustrated via simulations. The illustrative example is composed of a network of ten different chaotic nodes.

[1]  Guanrong Chen,et al.  Pinning control of complex network synchronization: A recurrent neural network approach , 2017 .

[2]  Manolis A. Christodoulou,et al.  Dynamical Neural Networks that Ensure Exponential Identification Error Convergence , 1997, Neural Networks.

[3]  Ji Xiang,et al.  Analysis of Pinning-Controlled Networks: A Renormalization Approach , 2009, IEEE Transactions on Automatic Control.

[4]  O. Rössler An equation for continuous chaos , 1976 .

[5]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[6]  Reza Langari,et al.  Rollover Prediction and Control in Heavy Vehicles Via Recurrent High Order Neural Networks , 2011, Intell. Autom. Soft Comput..

[7]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[8]  Alexander S. Poznyak,et al.  Nonlinear adaptive trajectory tracking using dynamic neural networks , 1999, IEEE Trans. Neural Networks.

[9]  F. Garofalo,et al.  Controllability of complex networks via pinning. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  K S Narendra,et al.  Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control , 1996, IEEE Trans. Neural Networks.

[11]  Johan A. K. Suykens,et al.  Artificial neural networks for modelling and control of non-linear systems , 1995 .

[12]  Edgar N. Sánchez,et al.  Chaos control and synchronization, with input saturation, via recurrent neural networks , 2003, Neural Networks.

[13]  Snehasis Mukhopadhyay,et al.  Adaptive control using neural networks and approximate models , 1997, IEEE Trans. Neural Networks.

[14]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[15]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[16]  Edgar N. Sánchez,et al.  Output tracking with constrained inputs via inverse optimal adaptive recurrent neural control , 2008, Eng. Appl. Artif. Intell..

[17]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[18]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[19]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[20]  Tianping Chen,et al.  Synchronization in general complex delayed dynamical networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Guanrong Chen,et al.  Pinning control and controllability of complex dynamical networks , 2016, International Journal of Automation and Computing.

[22]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[23]  Lei Wang,et al.  Robustness of pinning a general complex dynamical network , 2010 .

[24]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[25]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[26]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[27]  Zengqiang Chen,et al.  Pinning control of complex dynamical networks with heterogeneous delays , 2008, Comput. Math. Appl..

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[30]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[31]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[32]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[33]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.

[34]  Marios M. Polycarpou,et al.  High-order neural network structures for identification of dynamical systems , 1995, IEEE Trans. Neural Networks.

[35]  Guo-Xing Wen,et al.  Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[36]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[37]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[38]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[39]  Edgar N. Sánchez,et al.  Neural inverse optimal pinning control for synchronization of complex networks with nonidentical chaotic nodes , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[40]  Alexander G. Loukianov,et al.  Real-Time Recurrent Neural State Estimation , 2011, IEEE Transactions on Neural Networks.

[41]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[42]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.