Smoothed nonparametric spectral estimation via cepsturm thresholding

[1]  B. P. Bogert,et al.  The quefrency analysis of time series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking , 1963 .

[2]  P. Whittle The Analysis of Multiple Stationary Time Series , 1953 .

[3]  Donald B. Percival,et al.  Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..

[4]  Petre Stoica,et al.  On nonparametric spectral estimation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[5]  Masanobu Taniguchi On estimation of parameters of Gaussian stationary processes , 1979 .

[6]  E. J. Hannan,et al.  The Estimation of the Prediction Error Variance , 1977 .

[7]  B. Ninness,et al.  The Waterbed Effect in Spectral Estimation , 2004, IEEE Signal Processing Magazine.

[8]  Zhongjie Xie,et al.  MODEL SELECTION AND ORDER DETERMINATION FOR TIME SERIES BY INFORMATION BETWEEN THE PAST AND THE FUTURE , 1996 .

[9]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[10]  J. Markel,et al.  FFT pruning , 1971 .

[11]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[12]  Brett Ninness,et al.  The asymptotic CRLB for the spectrum of ARMA processes , 2003, IEEE Trans. Signal Process..

[13]  Hong-ye Gao Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .

[14]  A. Kaderli,et al.  Spectral estimation of ARMA processes using ARMA-cepstrum recursion , 2000, IEEE Signal Processing Letters.

[15]  P. Enqvist,et al.  A Convex Optimization Approach to ARMA(n, m) Model Design from Covariance and Cepstral Data , 2004, SIAM J. Control. Optim..

[16]  Masanobu Taniguchi ON ESTIMATION OF THE INTEGRALS OF CERTAIN FUNCTIONS OF SPECTRAL DENSITY , 1980 .

[17]  Ronald W. Schafer,et al.  Digital Processing of Speech Signals , 1978 .

[18]  P. F. Sjoholm Statistical optimization of the log spectral density estimate , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..

[19]  Chin-Hui Lee,et al.  On the asymptotic statistical behavior of empirical cepstral coefficients , 1993, IEEE Trans. Signal Process..

[20]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[21]  Petre Stoica,et al.  Total-Variance Reduction Via Thresholding: Application to Cepstral Analysis , 2007, IEEE Transactions on Signal Processing.

[22]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[23]  K. L. Saxena,et al.  Estimation of the Non-Centrality Parameter of a Chi Squared Distribution , 1982 .

[24]  Adelino R. Ferreira da Silva Wavelet denoising with evolutionary algorithms , 2005, Digit. Signal Process..

[25]  Victor Solo,et al.  Modeling of two-dimensional random fields by parametric cepstrum , 1986, IEEE Trans. Inf. Theory.

[26]  Pierre Moulin Wavelet thresholding techniques for power spectrum estimation , 1994, IEEE Trans. Signal Process..

[27]  Mazin G. Rahim,et al.  On second-order statistics and linear estimation of cepstral coefficients , 1999, IEEE Trans. Speech Audio Process..