Lightweight multi-level feature difference fusion network for RGB-D-T salient object detection

[1]  Yunhui Yan,et al.  A Novel Visible-Depth-Thermal Image Dataset of Salient Object Detection for Robotic Visual Perception , 2023, IEEE/ASME Transactions on Mechatronics.

[2]  Yongjun Zhang,et al.  Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds , 2023, Journal of King Saud University: Computer and Information Sciences.

[3]  Yunhui Yan,et al.  RGB-T image analysis technology and application: A survey , 2023, Eng. Appl. Artif. Intell..

[4]  Jieyu Zhao,et al.  3D Mesh classification and panoramic image segmentation using spherical vector networks with rotation-equivariant self-attention mechanism , 2023, J. King Saud Univ. Comput. Inf. Sci..

[5]  Xiangbin Liu,et al.  Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity , 2023, J. King Saud Univ. Comput. Inf. Sci..

[6]  Kang Yi,et al.  MoADNet: Mobile Asymmetric Dual-Stream Networks for Real-Time and Lightweight RGB-D Salient Object Detection , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Guibiao Liao,et al.  Cross-Collaborative Fusion-Encoder Network for Robust RGB-Thermal Salient Object Detection , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  J. Zeng,et al.  Multi-scale YOLACT for instance segmentation , 2022, J. King Saud Univ. Comput. Inf. Sci..

[9]  Q. Jiang,et al.  CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Wujie Zhou,et al.  APNet: Adversarial Learning Assistance and Perceived Importance Fusion Network for All-Day RGB-T Salient Object Detection , 2022, IEEE Transactions on Emerging Topics in Computational Intelligence.

[11]  Yanjiao Shi,et al.  Accurate and efficient salient object detection via position prior attention , 2022, Image Vis. Comput..

[12]  Jin Tang,et al.  Weakly Alignment-Free RGBT Salient Object Detection With Deep Correlation Network , 2022, IEEE Transactions on Image Processing.

[13]  Yun Xiao,et al.  SwinNet: Swin Transformer Drives Edge-Aware RGB-D and RGB-T Salient Object Detection , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Yuantao Chen,et al.  Improved anti-occlusion object tracking algorithm using Unscented Rauch-Tung-Striebel smoother and kernel correlation filter , 2022, J. King Saud Univ. Comput. Inf. Sci..

[15]  Jinhui Tang,et al.  Learning Discriminative Cross-Modality Features for RGB-D Saliency Detection , 2022, IEEE Transactions on Image Processing.

[16]  Rajashree Dash,et al.  Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN , 2022, J. King Saud Univ. Comput. Inf. Sci..

[17]  Risnandar DeSa COVID-19: Deep salient COVID-19 image-based quality assessment , 2021, Journal of King Saud University - Computer and Information Sciences.

[18]  Runmin Cong,et al.  Dynamic Selective Network for RGB-D Salient Object Detection , 2021, IEEE Transactions on Image Processing.

[19]  Jenq-Neng Hwang,et al.  IRFR-Net: Interactive Recursive Feature-Reshaping Network for Detecting Salient Objects in RGB-D Images. , 2021, IEEE transactions on neural networks and learning systems.

[20]  Yun Xiao,et al.  TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network , 2021, ACM Multimedia.

[21]  Sam Kwong,et al.  Cross-modality Discrepant Interaction Network for RGB-D Salient Object Detection , 2021, ACM Multimedia.

[22]  Fushuo Huo,et al.  Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection , 2021, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Martin Aruldoss,et al.  A study on generic object detection with emphasis on future research directions , 2021, J. King Saud Univ. Comput. Inf. Sci..

[24]  Kechen Song,et al.  CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection , 2021, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Qijun Zhao,et al.  Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection , 2021, ACM Multimedia.

[26]  Siwei Ma,et al.  Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection , 2021, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Wujie Zhou,et al.  CCAFNet: Crossflow and Cross-Scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images , 2021, IEEE Transactions on Multimedia.

[28]  Jenq-Neng Hwang,et al.  ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection , 2021, IEEE Transactions on Circuits and Systems for Video Technology.

[29]  Qijun Zhao,et al.  BTS-Net: Bi-Directional Transfer-And-Selection Network for RGB-D Salient Object Detection , 2021, 2021 IEEE International Conference on Multimedia and Expo (ICME).

[30]  Songyuan Li,et al.  Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Ming-Ming Cheng,et al.  SAMNet: Stereoscopically Attentive Multi-Scale Network for Lightweight Salient Object Detection , 2021, IEEE Transactions on Image Processing.

[32]  Weisi Lin,et al.  Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection , 2021, IEEE Transactions on Image Processing.

[33]  Ming-Ming Cheng,et al.  EDN: Salient Object Detection via Extremely-Downsampled Network , 2020, IEEE Transactions on Image Processing.

[34]  Ming-Ming Cheng,et al.  MobileSal: Extremely Efficient RGB-D Salient Object Detection , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Ming-Ming Cheng,et al.  Lightweight Salient Object Detection via Hierarchical Visual Perception Learning , 2020, IEEE Transactions on Cybernetics.

[36]  Ling Shao,et al.  Bifurcated Backbone Strategy for RGB-D Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[37]  Jin Tang,et al.  Multi-Interactive Dual-Decoder for RGB-Thermal Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[38]  Ming-Ming Cheng,et al.  Dynamic Feature Integration for Simultaneous Detection of Salient Object, Edge, and Skeleton , 2020, IEEE Transactions on Image Processing.

[39]  Runmin Cong,et al.  DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[40]  Roohie Naaz Mir,et al.  Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition , 2019, J. King Saud Univ. Comput. Inf. Sci..

[41]  Bo Ren,et al.  Enhanced-alignment Measure for Binary Foreground Map Evaluation , 2018, IJCAI.

[42]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Tao Li,et al.  Structure-Measure: A New Way to Evaluate Foreground Maps , 2017, International Journal of Computer Vision.

[44]  Krista A. Ehinger,et al.  A novel graph-based optimization framework for salient object detection , 2017, Pattern Recognit..

[45]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Q. Zhang,et al.  Real-Time One-Stream Semantic-Guided Refinement Network for RGB-Thermal Salient Object Detection , 2022, IEEE Transactions on Instrumentation and Measurement.

[48]  Wujie Zhou,et al.  TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection , 2021, IEEE Signal Processing Letters.

[49]  Shi-Min Hu,et al.  Global Contrast Based Salient Region Detection , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Shijian Lu,et al.  Robust and Efficient Saliency Modeling from Image Co-Occurrence Histograms , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.