Photocontrol of the translocation of molecules, peptides, and quantum dots through cell and lipid membranes doped with azobenzene copolymers.
暂无分享,去创建一个
I. Alves | C. Tribet | A. Walrant | S. Sagan | D. Massotte | L. Auvray | S. Cribier | D. Milioni | S. Sebai | Cécile Huin
[1] D. Engelman,et al. pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation , 2010, Proceedings of the National Academy of Sciences.
[2] C. Tribet,et al. Permeabilization of lipid membranes and cells by a light-responsive copolymer. , 2010, Langmuir : the ACS journal of surfaces and colloids.
[3] Sara M. Butterfield,et al. Wechselwirkungen zwischen amyloidogenen Proteinen und Membranen: Modellsysteme liefern mechanistische Einblicke , 2010 .
[4] H. Lashuel,et al. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. , 2010, Angewandte Chemie.
[5] Isabel D. Alves,et al. Translocation and Endocytosis for Cell-penetrating Peptide Internalization , 2009, The Journal of Biological Chemistry.
[6] Shana O Kelley,et al. Recent advances in the use of cell-penetrating peptides for medical and biological applications. , 2009, Advanced drug delivery reviews.
[7] K. Hahm,et al. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations , 2009, Journal of peptide science : an official publication of the European Peptide Society.
[8] Yunyan Xie,et al. Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. , 2009, Angewandte Chemie.
[9] E. Isacoff,et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR , 2009, Proceedings of the National Academy of Sciences.
[10] N. D. da Silveira,et al. Electroformation of giant vesicles from an inverse phase precursor. , 2009, Biophysical journal.
[11] M. Takagi,et al. Reversible Control of Exo‐ and Endo‐Budding Transitions in a Photosensitive Lipid Membrane , 2009, Chembiochem : a European journal of chemical biology.
[12] D. Engelman,et al. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane , 2008, Proceedings of the National Academy of Sciences.
[13] W. Binder. Polymerinduzierte transiente Poren in Lipidmembranen , 2008 .
[14] W. Binder. Polymer-induced transient pores in lipid membranes. , 2008, Angewandte Chemie.
[15] C. Tribet,et al. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. , 2007, Soft matter.
[16] C. Tribet,et al. Long-living channels of well defined radius opened in lipid bilayers by polydisperse, hydrophobically-modified polyacrylic acids. , 2006, Soft matter.
[17] Xikui Liu,et al. Optical switching of self-assembly: micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers. , 2006, Angewandte Chemie.
[18] Xikui Liu Dr. and,et al. Optical Switching of Self-Assembly: Micellization and Micelle–Hollow-Sphere Transition of Hydrogen-Bonded Polymers† , 2006 .
[19] Jin-Ye Wang,et al. Photoisomerisable cholesterol derivatives as photo-trigger of liposomes: effect of lipid polarity, temperature, incorporation ratio, and cholesterol. , 2005, Biochimica et biophysica acta.
[20] P. Guégan,et al. Ionic channel behavior of modified cyclodextrins inserted in lipid membranes. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[21] T. Chen,et al. Alkylated derivatives of poly(ethylacrylic acid) can be inserted into preformed liposomes and trigger pH-dependent intracellular delivery of liposomal contents , 2004, Molecular membrane biology.
[22] M. Yessine,et al. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. , 2004, Advanced drug delivery reviews.
[23] Shimon Weiss,et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.
[24] P. Cullis,et al. Drug Delivery Systems: Entering the Mainstream , 2004, Science.
[25] Vladimir P Torchilin,et al. Peptide and protein drug delivery to and into tumors: challenges and solutions. , 2003, Drug discovery today.
[26] D. Tirrell,et al. Polyelectrolyte-sensitized phospholipid vesicles , 1992 .
[27] H. Ringsdorf,et al. Wechselwirkung von hydrophob modifizierten Poly‐N‐isopropylacrylamiden mit Modellmembranen ‐ oder das Spielen einer molekularen Ziehharmonika , 1991 .
[28] H. Ringsdorf,et al. Interaction of Hydrophobically‐Modified Poly‐N‐isopropylacrylamides with Model Membranes—or Playing a Molecular Accordion , 1991 .
[29] S. Schreiber,et al. Photo-modulated ion channels based on covalently linked gramicidins. , 1991, Biochimica et biophysica acta.
[30] I. Alves,et al. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. , 2011, Biochimica et biophysica acta.
[31] P. Guégan,et al. Tuning Macromolecular Structures of Synthetic Vectors for Gene Therapy , 2008 .
[32] S. Sagan,et al. A direct approach to quantification of the cellular uptake of cell-penetrating peptides using MALDI-TOF mass spectrometry , 2006, Nature Protocols.
[33] C. Tribet,et al. Light-Triggered Association of Bovine Serum Albumin and Azobenzene-Modified Poly(acrylic acid) in Dilute and Semidilute Solutions , 2006 .