Photocontrol of the translocation of molecules, peptides, and quantum dots through cell and lipid membranes doped with azobenzene copolymers.

Light opens: Photocontrolled transmembrane passage of soluble dyes and delivery of small peptides into mammalian cells has been achieved using azobenzene-modified polymers (AMPs) as permeabilizing agents. Irradiation with UV and visible light triggers polarity switches upon cis-trans isomerization of the azobenzene moieties. Photoresponsive permeability and pore opening promoted by trans-AMPs, but not cis-AMPs, in supported lipid bilayers are observed.

[1]  D. Engelman,et al.  pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation , 2010, Proceedings of the National Academy of Sciences.

[2]  C. Tribet,et al.  Permeabilization of lipid membranes and cells by a light-responsive copolymer. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  Sara M. Butterfield,et al.  Wechselwirkungen zwischen amyloidogenen Proteinen und Membranen: Modellsysteme liefern mechanistische Einblicke , 2010 .

[4]  H. Lashuel,et al.  Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. , 2010, Angewandte Chemie.

[5]  Isabel D. Alves,et al.  Translocation and Endocytosis for Cell-penetrating Peptide Internalization , 2009, The Journal of Biological Chemistry.

[6]  Shana O Kelley,et al.  Recent advances in the use of cell-penetrating peptides for medical and biological applications. , 2009, Advanced drug delivery reviews.

[7]  K. Hahm,et al.  Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[8]  Yunyan Xie,et al.  Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. , 2009, Angewandte Chemie.

[9]  E. Isacoff,et al.  Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR , 2009, Proceedings of the National Academy of Sciences.

[10]  N. D. da Silveira,et al.  Electroformation of giant vesicles from an inverse phase precursor. , 2009, Biophysical journal.

[11]  M. Takagi,et al.  Reversible Control of Exo‐ and Endo‐Budding Transitions in a Photosensitive Lipid Membrane , 2009, Chembiochem : a European journal of chemical biology.

[12]  D. Engelman,et al.  Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane , 2008, Proceedings of the National Academy of Sciences.

[13]  W. Binder Polymerinduzierte transiente Poren in Lipidmembranen , 2008 .

[14]  W. Binder Polymer-induced transient pores in lipid membranes. , 2008, Angewandte Chemie.

[15]  C. Tribet,et al.  Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. , 2007, Soft matter.

[16]  C. Tribet,et al.  Long-living channels of well defined radius opened in lipid bilayers by polydisperse, hydrophobically-modified polyacrylic acids. , 2006, Soft matter.

[17]  Xikui Liu,et al.  Optical switching of self-assembly: micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers. , 2006, Angewandte Chemie.

[18]  Xikui Liu Dr. and,et al.  Optical Switching of Self-Assembly: Micellization and Micelle–Hollow-Sphere Transition of Hydrogen-Bonded Polymers† , 2006 .

[19]  Jin-Ye Wang,et al.  Photoisomerisable cholesterol derivatives as photo-trigger of liposomes: effect of lipid polarity, temperature, incorporation ratio, and cholesterol. , 2005, Biochimica et biophysica acta.

[20]  P. Guégan,et al.  Ionic channel behavior of modified cyclodextrins inserted in lipid membranes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  T. Chen,et al.  Alkylated derivatives of poly(ethylacrylic acid) can be inserted into preformed liposomes and trigger pH-dependent intracellular delivery of liposomal contents , 2004, Molecular membrane biology.

[22]  M. Yessine,et al.  Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. , 2004, Advanced drug delivery reviews.

[23]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[24]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[25]  Vladimir P Torchilin,et al.  Peptide and protein drug delivery to and into tumors: challenges and solutions. , 2003, Drug discovery today.

[26]  D. Tirrell,et al.  Polyelectrolyte-sensitized phospholipid vesicles , 1992 .

[27]  H. Ringsdorf,et al.  Wechselwirkung von hydrophob modifizierten Poly‐N‐isopropylacrylamiden mit Modellmembranen ‐ oder das Spielen einer molekularen Ziehharmonika , 1991 .

[28]  H. Ringsdorf,et al.  Interaction of Hydrophobically‐Modified Poly‐N‐isopropylacrylamides with Model Membranes—or Playing a Molecular Accordion , 1991 .

[29]  S. Schreiber,et al.  Photo-modulated ion channels based on covalently linked gramicidins. , 1991, Biochimica et biophysica acta.

[30]  I. Alves,et al.  Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. , 2011, Biochimica et biophysica acta.

[31]  P. Guégan,et al.  Tuning Macromolecular Structures of Synthetic Vectors for Gene Therapy , 2008 .

[32]  S. Sagan,et al.  A direct approach to quantification of the cellular uptake of cell-penetrating peptides using MALDI-TOF mass spectrometry , 2006, Nature Protocols.

[33]  C. Tribet,et al.  Light-Triggered Association of Bovine Serum Albumin and Azobenzene-Modified Poly(acrylic acid) in Dilute and Semidilute Solutions , 2006 .