Experimental Implementation of Networked Chaotic Oscillators Based on Cross-Coupled Inverter Rings in a CMOS Integrated Circuit

A novel chaotic oscillator based on "cross-coupled" inverter rings is presented. The oscillator consists of a 3-ring to which higher odd n-rings are progressively coupled via diodes and pass gates; it does not contain reactive or resistive elements, and is thus suitable for area-efficient implementation on a CMOS integrated circuit. Numerical simulation based on piece-wise linear approximation predicted the generation of positive spikes having approximately constant periodicity but highly variable cycle amplitude. Simulation Program with Integrated Circuit Emphasis (SPICE) simulations and experimental data from a prototype realized on 0.7 μm technology confirmed this finding, and demonstrated increasing correlation dimension (D2) as 5-, 7- and 9-rings were progressively coupled to the 3-ring. Experimental data from a ring of 24 such oscillator cells showed phase synchronization and partial amplitude synchronization (formation of small clusters), emerging depending on DC gate voltage applied at NMOS transistors implementing diffusive coupling between neighboring cells. Thanks to its small area, simple synchronizability and digital controllability, the proposed circuit enables experimental investigation of dynamical complexity in large networks of coupled chaotic oscillators, and may additionally be suitable for applications such as broadband signal and random number generation.

[1]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[2]  Krishnamurthy Murali,et al.  The smallest transistor-based nonautonomous chaotic circuit , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  N. Rulkov,et al.  Generation of broad-band chaos using blocking oscillator , 2001 .

[4]  Ahmed S. Elwakil,et al.  An equation for Generating Chaos and its monolithic Implementation , 2002, Int. J. Bifurc. Chaos.

[5]  Ferruccio Renzoni,et al.  Irrationality and quasiperiodicity in driven nonlinear systems. , 2014, Physical review letters.

[6]  Ying Zhang,et al.  Experimental investigation of partial synchronization in coupled chaotic oscillators. , 2003, Chaos.

[7]  Antoni Morro,et al.  Chaos-Based Mixed Signal Implementation of Spiking Neurons , 2009, Int. J. Neural Syst..

[8]  Adi R. Bulsara,et al.  Realization of reliable and flexible logic gates using noisy nonlinear circuits , 2009 .

[9]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[10]  Manuel Delgado-Restituto,et al.  CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit , 1993 .

[11]  Mark Hess,et al.  TRANSITION TO PHASE SYNCHRONIZATION OF CHAOS , 1998 .

[12]  Yoshifumi Nishio,et al.  Simple Chaotic Circuit Using CMOS Ring oscillators , 2004, Int. J. Bifurc. Chaos.

[13]  Tamás Roska Computational And Computer Complexity Of Analogic Cellular Wave Computers , 2003, J. Circuits Syst. Comput..

[14]  Ahmed S. Elwakil,et al.  1-d digitally-Controlled multiscroll Chaos Generator , 2007, Int. J. Bifurc. Chaos.

[15]  Kazuyuki Aihara,et al.  A current-mode circuit of a chaotic neuron model , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[16]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[17]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[20]  Luigi Fortuna,et al.  Experimental synchronization of single-transistor-based chaotic circuits. , 2007, Chaos.

[21]  Cong-Kha Pham,et al.  Chaotic Behavior in Simple Looped MOS Inverters , 1995 .

[22]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[23]  Bertram E. Shi Oriented Spatial Pattern Formation in a Four Layer CMOS Cellular Neural Network , 2004, Int. J. Bifurc. Chaos.

[24]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Jesus M. Munoz-Pacheco,et al.  Experimental Synchronization of two Integrated Multi-scroll Chaotic Oscillators , 2014 .

[26]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[27]  Ludovico Minati,et al.  Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance. , 2014, Chaos.

[28]  M. Clerc,et al.  Quasiperiodicity route to spatiotemporal chaos in one-dimensional pattern-forming systems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[30]  P Woafo,et al.  Synchronization in a ring of four mutually coupled van der Pol oscillators: theory and experiment. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[33]  E.G. Friedman,et al.  Methodology for placing localized guard rings to reduce substrate noise in mixed-signal circuits , 2008, 2008 Ph.D. Research in Microelectronics and Electronics.

[34]  Westervelt,et al.  Frequency locking, quasiperiodicity, and chaos in extrinsic Ge. , 1986, Physical review letters.

[35]  Ned J Corron,et al.  A simple Lorenz circuit and its radio frequency implementation. , 2007, Chaos.

[36]  Wimol San-Um,et al.  Automatic stand-alone liquid mixer with chaotic PWM control using diode-based Rössler system , 2014, 2014 International Electrical Engineering Congress (iEECON).

[37]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[38]  Esteban Tlelo-Cuautle,et al.  Frequency scaling simulation of Chua's circuit by automatic determination and control of step-size , 2007, Appl. Math. Comput..

[39]  Grigory V. Osipov,et al.  PHASE SYNCHRONIZATION EFFECTS IN A LATTICE OF NONIDENTICAL ROSSLER OSCILLATORS , 1997 .

[40]  Carlos Sánchez-López,et al.  Multiscroll floating gate–based integrated chaotic oscillator , 2013, Int. J. Circuit Theory Appl..

[41]  M. Horowitz,et al.  Precise delay generation using coupled oscillators , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[42]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[43]  Hakan Kuntman,et al.  Improved Realization of Mixed-Mode Chaotic Circuit , 2002, Int. J. Bifurc. Chaos.

[44]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[45]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[46]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[47]  Luigi Fortuna,et al.  Analysis of remote synchronization in complex networks. , 2013, Chaos.

[48]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[49]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[50]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[51]  Luigi Fortuna,et al.  An Integrated Chua's Cell for the Implementation of a Chua's Array , 2004, Int. J. Bifurc. Chaos.

[52]  Julien Clinton Sprott,et al.  A comparison of correlation and Lyapunov dimensions , 2005 .

[53]  Michael A. Lieberman,et al.  Secure random number generation using chaotic circuits , 1989, IEEE Military Communications Conference, 'Bridging the Gap. Interoperability, Survivability, Security'.

[54]  Joos Vandewalle,et al.  Cluster synchronization in oscillatory networks. , 2008, Chaos.

[55]  Asad A. Abidi,et al.  A 300-MHz CMOS voltage-controlled ring oscillator , 1990 .

[56]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[57]  Michael Peter Kennedy,et al.  A Fast and Simple Implementation of Chua's oscillator with cubic-like Nonlinearity , 2005, Int. J. Bifurc. Chaos.

[58]  Tetsuya Asai,et al.  A subthreshold Analog MOS Circuit for Lotka-volterra Chaotic oscillator , 2006, Int. J. Bifurc. Chaos.

[59]  Ahmed S. Elwakil,et al.  A low-voltage, low-power, chaotic oscillator, derived from a relaxation oscillator , 2000 .

[60]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[61]  Francis C. M. Lau,et al.  Digital Communications with Chaos: Multiple Access Techniques and Performance , 2006 .

[62]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[63]  P. Woafo,et al.  Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation. , 2013, Chaos.

[64]  David Ruelle,et al.  OCCURRENCE OF STRANGE AXIOM A ATTRACTORS NEAR QUASI PERIODIC FLOWS ON TM, M IS GREATER THAN OR EQUAL TO 3 , 1978 .

[65]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[66]  L. Nagel,et al.  Computer analysis of nonlinear circuits, excluding radiation (CANCER) , 1971 .

[67]  Ali Zeki,et al.  An ADC Based Random Bit Generator Based on a Double scroll Chaotic Circuit , 2010, J. Circuits Syst. Comput..

[68]  Manoj Sachdev,et al.  A method to derive an equation for the oscillation frequency of a ring oscillator , 2003 .

[69]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[70]  James P. Sethna,et al.  Universal properties of the transition from quasi-periodicity to chaos , 1983 .

[71]  A. Tamaševičius,et al.  Coupled Chaotic Colpitts Oscillators: Identical and Mismatched Cases , 2006 .

[72]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[73]  Ali Afzali-Kusha,et al.  Substrate Noise Coupling in SoC Design: Modeling, Avoidance, and Validation , 2006, Proceedings of the IEEE.

[74]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Hans Ingo Weber,et al.  Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems , 2007 .

[76]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[77]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[78]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[79]  Young-Sik Kim,et al.  Fast Digital TRNG Based on Metastable Ring Oscillator , 2008, CHES.

[80]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[81]  J. Jovicich,et al.  Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators. , 2015, Chaos.

[82]  Martin Greenwald Beyond benchmarking - how experiments and simulations can work together in plasma physics , 2004, Comput. Phys. Commun..

[83]  Ludovico Minati,et al.  Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects. , 2014, Chaos.

[84]  Kazuyuki Aihara,et al.  Circuit Implementation and Dynamics of a Two-Dimensional MOSFET Neuron Model , 2007, Int. J. Bifurc. Chaos.

[85]  Xiaohua Zhu,et al.  Principles of Chaotic Signal Radar , 2007, Int. J. Bifurc. Chaos.

[86]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  S. Kondo,et al.  Non-linear technologies in a dishwasher , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[88]  Morten L. Kringelbach,et al.  Exploring the network dynamics underlying brain activity during rest , 2014, Progress in Neurobiology.

[89]  Krešimir Josić,et al.  Synchronization of chaotic systems and invariant manifolds , 2000 .

[90]  J.D. Golic,et al.  New Methods for Digital Generation and Postprocessing of Random Data , 2006, IEEE Transactions on Computers.

[91]  Anaclet Fomethe,et al.  Synchronization of simplest two-component Hartley’s chaotic circuits: influence of channel , 2013 .