Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods
暂无分享,去创建一个
[1] J. Faber,et al. Binary Neutron Star Mergers , 2012, Living Reviews in Relativity.
[2] Saul A. Teukolsky,et al. Short note on the mass matrix for Gauss-Lobatto grid points , 2014, J. Comput. Phys..
[3] W. Tichy. Long term black hole evolution with the BSSN system by pseudospectral methods , 2006, 0911.0973.
[4] José A. Font,et al. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.
[5] Dean G. Blevins,et al. Introduction 3-1 , 1969 .
[6] Luciano Rezzolla,et al. High-order fully general-relativistic hydrodynamics: new approaches and tests , 2013, 1312.5004.
[7] E. Seidel,et al. SYMMETRY WITHOUT SYMMETRY: NUMERICAL SIMULATION OF AXISYMMETRIC SYSTEMS USING CARTESIAN GRIDS , 1999 .
[8] L. Rezzolla,et al. High-Order Numerical-Relativity Simulations of Binary Neutron Stars , 2015, 1502.00551.
[9] Chi-Wang Shu,et al. Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..
[10] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[11] J. Font,et al. Three-dimensional numerical general relativistic hydrodynamics. 1. Formulations, methods, and code tests , 2000 .
[12] Sebastiano Bernuzzi,et al. Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement , 2015 .
[13] Antonio Huerta,et al. A simple shock‐capturing technique for high‐order discontinuous Galerkin methods , 2012 .
[14] Frans Pretorius,et al. Numerical relativity using a generalized harmonic decomposition , 2005 .
[15] Richard Baltensperger,et al. Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..
[16] S. Bernuzzi,et al. Tidal effects in binary neutron star coalescence , 2012, 1205.3403.
[17] L. Rezzolla,et al. Beyond second-order convergence in simulations of binary neutron stars in full general-relativity , 2013, 1306.6052.
[18] Jorge Pullin. Numerical Relativity: Solving Einstein’s Equations on the Computer , 2011 .
[19] David Gottlieb,et al. Spectral Methods on Arbitrary Grids , 1995 .
[20] Sascha Husa,et al. Calibration of moving puncture simulations , 2008 .
[21] Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests , 2002, astro-ph/0204288.
[22] Jan S. Hesthaven,et al. Numerical simulations with a first-order BSSN formulation of Einstein"s field equations , 2012, 1202.1038.
[23] Jian Zhao,et al. Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics , 2013, J. Comput. Phys..
[24] B. Bruegmann,et al. Pseudospectral method for gravitational wave collapse , 2015, 1504.04732.
[25] Chi-Wang Shu,et al. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..
[26] L. Baiotti,et al. Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.
[27] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[28] P. Paolucci,et al. The “Cubed Sphere” , 1996 .
[29] Gregor Gassner,et al. A Comparison of the Dispersion and Dissipation Errors of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods , 2011, SIAM J. Sci. Comput..
[30] Saul A. Teukolsky,et al. Formulation of discontinuous Galerkin methods for relativistic astrophysics , 2015, J. Comput. Phys..
[31] Luciano Rezzolla,et al. Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.
[32] Michael Dumbser,et al. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..
[33] E. Schnetter,et al. A multi-block infrastructure for three-dimensional time-dependent numerical relativity , 2006, gr-qc/0602104.
[34] Sebastiano Bernuzzi,et al. Numerical relativity simulations of binary neutron stars , 2011, 1104.4751.
[35] Daan Huybrechs,et al. Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials , 2012, Math. Comput..
[36] Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions , 2015, 1507.07100.
[37] R. Tolman. Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .
[38] E. Gourgoulhon. 3 + 1 formalism in general relativity , 2012 .
[39] Jan S. Hesthaven,et al. Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators , 2010, 1008.1820.
[40] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[41] Chi-Wang Shu,et al. A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..
[42] Wai-Sun Don,et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..
[43] Bernardo Cockburn,et al. Error Estimates for the Runge-Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data , 2008, SIAM J. Numer. Anal..
[44] Andrea Mignone,et al. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..
[45] Gregor Gassner,et al. A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..
[46] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[47] Michael Dumbser,et al. Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.
[48] J. Novak,et al. Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.
[49] Gerhard Zumbusch,et al. Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime , 2009, 0901.0851.
[50] J. Oppenheimer,et al. On Massive neutron cores , 1939 .
[51] David A. Kopriva,et al. Implementing Spectral Methods for Partial Differential Equations , 2009 .
[52] Ewald Müller,et al. The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.