Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO) algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic, special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.

[1]  J. Faber,et al.  Binary Neutron Star Mergers , 2012, Living Reviews in Relativity.

[2]  Saul A. Teukolsky,et al.  Short note on the mass matrix for Gauss-Lobatto grid points , 2014, J. Comput. Phys..

[3]  W. Tichy Long term black hole evolution with the BSSN system by pseudospectral methods , 2006, 0911.0973.

[4]  José A. Font,et al.  Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.

[5]  Dean G. Blevins,et al.  Introduction 3-1 , 1969 .

[6]  Luciano Rezzolla,et al.  High-order fully general-relativistic hydrodynamics: new approaches and tests , 2013, 1312.5004.

[7]  E. Seidel,et al.  SYMMETRY WITHOUT SYMMETRY: NUMERICAL SIMULATION OF AXISYMMETRIC SYSTEMS USING CARTESIAN GRIDS , 1999 .

[8]  L. Rezzolla,et al.  High-Order Numerical-Relativity Simulations of Binary Neutron Stars , 2015, 1502.00551.

[9]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  J. Font,et al.  Three-dimensional numerical general relativistic hydrodynamics. 1. Formulations, methods, and code tests , 2000 .

[12]  Sebastiano Bernuzzi,et al.  Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement , 2015 .

[13]  Antonio Huerta,et al.  A simple shock‐capturing technique for high‐order discontinuous Galerkin methods , 2012 .

[14]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[15]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[16]  S. Bernuzzi,et al.  Tidal effects in binary neutron star coalescence , 2012, 1205.3403.

[17]  L. Rezzolla,et al.  Beyond second-order convergence in simulations of binary neutron stars in full general-relativity , 2013, 1306.6052.

[18]  Jorge Pullin Numerical Relativity: Solving Einstein’s Equations on the Computer , 2011 .

[19]  David Gottlieb,et al.  Spectral Methods on Arbitrary Grids , 1995 .

[20]  Sascha Husa,et al.  Calibration of moving puncture simulations , 2008 .

[21]  Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests , 2002, astro-ph/0204288.

[22]  Jan S. Hesthaven,et al.  Numerical simulations with a first-order BSSN formulation of Einstein"s field equations , 2012, 1202.1038.

[23]  Jian Zhao,et al.  Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics , 2013, J. Comput. Phys..

[24]  B. Bruegmann,et al.  Pseudospectral method for gravitational wave collapse , 2015, 1504.04732.

[25]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[26]  L. Baiotti,et al.  Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.

[27]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[28]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[29]  Gregor Gassner,et al.  A Comparison of the Dispersion and Dissipation Errors of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods , 2011, SIAM J. Sci. Comput..

[30]  Saul A. Teukolsky,et al.  Formulation of discontinuous Galerkin methods for relativistic astrophysics , 2015, J. Comput. Phys..

[31]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[32]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[33]  E. Schnetter,et al.  A multi-block infrastructure for three-dimensional time-dependent numerical relativity , 2006, gr-qc/0602104.

[34]  Sebastiano Bernuzzi,et al.  Numerical relativity simulations of binary neutron stars , 2011, 1104.4751.

[35]  Daan Huybrechs,et al.  Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials , 2012, Math. Comput..

[36]  Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions , 2015, 1507.07100.

[37]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[38]  E. Gourgoulhon 3 + 1 formalism in general relativity , 2012 .

[39]  Jan S. Hesthaven,et al.  Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators , 2010, 1008.1820.

[40]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[41]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[42]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[43]  Bernardo Cockburn,et al.  Error Estimates for the Runge-Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data , 2008, SIAM J. Numer. Anal..

[44]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[45]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[48]  J. Novak,et al.  Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.

[49]  Gerhard Zumbusch,et al.  Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime , 2009, 0901.0851.

[50]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[51]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[52]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.