Diatomic silylynes, germylynes, stannylynes, and plumbylynes: structures, dipole moments, dissociation energies, and quartet-doublet gaps of EH and EX (E = Si, Ge, Sn, Pb; X = F, Cl, Br, I).

Systematic theoretical studies of the carbyne and halocarbyne analogues E-H and E-X (E = Si, Ge, Sn, Pb; X = F, Cl, Br, I) were carried out with ab initio coupled-cluster methods using very large basis sets. The (2)Π state is the ground electronic state for all these compounds. The quartet-doublet energy separations, equilibrium distances, and dissociation energies for these species are predicted. The quartet-doublet splittings fall in the order EF > ECl > EBr > EI > EH for a given metal E; and PbX > GeX > SnX > SiX for the same halogen atom X. The dipole moments span a large range, from 0.08 debye (GeH) to 3.58 debye (PbCl). The dissociation energies range from 1.84 eV (PbH) to 6.15 eV (SiF).

[1]  S. Sakaki,et al.  Formation of a germylyne complex: dehydrogenation of a hydrido(hydrogermylene)tungsten complex with mesityl isocyanate. , 2012, Angewandte Chemie.

[2]  G. Schnakenburg,et al.  Open-shell complexes containing metal-germanium triple bonds. , 2012, Angewandte Chemie.

[3]  G. Schnakenburg,et al.  Metal Activation of a Germylenoid, a New Approach to Metal–Germanium Triple Bonds: Synthesis and Reactions of the Germylidyne Complexes [Cp(CO)2M≡Ge–C(SiMe3)3] (M = Mo, W) , 2012 .

[4]  H. Schaefer,et al.  Stannylenes: structures, electron affinities, ionization energies, and singlet-triplet gaps of SnX2/SnXY and XSnR/SnR2/RSnR′ species (X; Y = H, F, Cl, Br, I, and R; R' = CH3, SiH3, GeH3, SnH3). , 2012, Inorganic chemistry.

[5]  F. Gelman,et al.  Do carbyne radicals really exist in aqueous solution? , 2012, Angewandte Chemie.

[6]  G. Schnakenburg,et al.  Chromium-silicon multiple bonds: the chemistry of terminal N-heterocyclic-carbene-stabilized halosilylidyne ligands. , 2011, Chemistry.

[7]  G. Frenking,et al.  Structures and bonding situation of Pb2X2 (X = H, F, Cl, Br and I) , 2011 .

[8]  J. Grabow,et al.  Precision spectroscopy of the {sup 207}Pb{sup 19}F molecule: Implications for measurement of P-odd and T-odd effects , 2011 .

[9]  M. Kozlov,et al.  Progress toward the electron electric-dipole-moment search: Theoretical study of the PbF molecule , 2010 .

[10]  Kirk A Peterson,et al.  Molecular core-valence correlation effects involving the post-d elements Ga-Rn: benchmarks and new pseudopotential-based correlation consistent basis sets. , 2010, The Journal of chemical physics.

[11]  A. Sekiguchi,et al.  Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb: From Phantom Species to Stable Compounds , 2010 .

[12]  G. Schnakenburg,et al.  SiBr2(Idipp): a stable N-heterocyclic carbene adduct of dibromosilylene. , 2009, Angewandte Chemie.

[13]  Brian P. Prascher,et al.  A CCSD(T) and ccCA study of mixed silicon hydrides and halides: Structures and thermochemistry , 2009 .

[14]  A. Lledós,et al.  Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb). , 2009, Inorganic chemistry.

[15]  Li-ming Wang,et al.  Halogenated silanes, radicals, and cations: Theoretical predictions on ionization energies, structur , 2008 .

[16]  B. Shepler,et al.  On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. , 2006, The journal of physical chemistry. A.

[17]  S. Borocci,et al.  Cationic germanium fluorides: a theoretical investigation on the structure, stability, and thermochemistry of GeFn/GeFn+ (n = 1-3). , 2006, The journal of physical chemistry. A.

[18]  G. Frenking,et al.  Why do the heavy-atom analogues of acetylene E2H2 (E = Si-Pb) exhibit unusual structures? , 2005, Journal of the American Chemical Society.

[19]  A. Philippopoulos,et al.  Halide Substitution Reactions of the Germylidyne Complexes trans-[X(dppe)2W⋮Ge(η1-Cp*)] (X = Cl, I; dppe = Ph2PCH2CH2PPh2; Cp* = C5Me5) , 2004 .

[20]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[21]  So Hirata,et al.  Third-order Douglas-Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: applications to diatomic and triatomic hydrides. , 2004, The Journal of chemical physics.

[22]  D. Graves,et al.  Improved interatomic potentials for silicon-fluorine and silicon-chlorine. , 2004, The Journal of chemical physics.

[23]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[24]  K. Peterson Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements , 2003 .

[25]  A. Sanjurjo,et al.  Experimental thermochemistry of the SiCl and SiBr radicals; enthalpies of formation of species in the Si-Cl and Si-Br systems , 2003 .

[26]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[27]  A. Mommers,et al.  The Generation of Low-Valence Tin Derivatives, RSn(I), in the Gas-Phase by Neutralization—reionization Mass Spectrometry , 2002 .

[28]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[29]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[30]  A. Metropoulos,et al.  An accurate description of the ground and excited states of SiH , 1999 .

[31]  Wenguo Xu,et al.  Structures, thermochemistry, and electron affinities of the germanium fluorides, GeFn/GeFn−(n=1–5) , 1999 .

[32]  D. Dixon,et al.  Theoretical study of the heats of formation of small silicon-containing compounds , 1999 .

[33]  R. Squires,et al.  Carbyne thermochemistry from energy-resolved collision-induced dissociation , 1999 .

[34]  C. Bauschlicher,et al.  Accurate Heats of Formation for SiF(n) and SiF(n+), for N=1-4 , 1998 .

[35]  Keiichi Tanaka,et al.  Infrared diode laser spectroscopy of the SiF radical. Analysis of hot bands up to ν = 9−8 , 1997 .

[36]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[37]  A. Nakajima,et al.  Photoelectron spectroscopy of germanium-fluorine binary cluster anions: the HOMO-LUMO gap estimation of Gen clusters , 1997 .

[38]  D. Hildenbrand,et al.  Dissociation energy of the molecule GeCl , 1996 .

[39]  R. Oldenborg,et al.  Bond Dissociation Energies of PbBr2(g) and the Dye Laser-Induced Fluorescence Excitation Spectrum of PbBr(A-X) , 1995 .

[40]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[41]  K. Balasubramanian,et al.  SPECTROSCOPIC CONSTANTS AND POTENTIAL-ENERGY CURVES FOR GEBR , 1993 .

[42]  K. Balasubramanian,et al.  Germanium monochloride (GeCl). Spectroscopic constants and potential energy curves , 1993 .

[43]  P. Armentrout,et al.  Collision-induced dissociation and charge-transfer reactions of SiFx+ (x = 1-4). Thermochemistry of SiFx and SiFx+ , 1993 .

[44]  K. Balasubramanian,et al.  Spectroscopic constants and potential energy curves of SnF , 1990 .

[45]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[46]  B. Ruscic,et al.  Photoionization studies of GeHn (n=2–4) , 1990 .

[47]  I. Dubois,et al.  New rotational analysis of the B′2Δ-X2Π, transition of SiCl , 1990 .

[48]  K. Balasubramanian Spectroscopic properties and potential energy curves for heavy p-block diatomic hydrides, halides, and chalconides , 1989 .

[49]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[50]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[51]  K. Balasubramanian Spectroscopic properties and potential energy curves of SnCl: Comparison with PbCl , 1988 .

[52]  K. Balasubramanian,et al.  Theoretical study of electric dipole and transition moments of GeH, SnH, and PbH , 1988 .

[53]  V. Fomichev,et al.  Calculation of the P- and T-odd spin-rotational Hamiltonian of the PbF molecule , 1987 .

[54]  G. Guelachvili,et al.  Infrared emission spectrum of the radical 28SiH: Observation and analysis of the rovibrational bands 1–0, 2–1, and 3–2 in the X 2Π ground state , 1986 .

[55]  Michael E. Coltrin,et al.  A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .

[56]  K. Evenson,et al.  Infrared and far‐infrared laser magnetic resonance spectroscopy of the GeH radical: Determination of ground state parameters , 1985 .

[57]  A. Hiraya,et al.  Emission spectra of SiH(A 2Δ→X 2Π) and SiCl2(Ã 1B1→X̃ 1A1) in the VUV photolyses of silane and chlorinated silanes , 1985 .

[58]  D. Robinson,et al.  Observation of the vibration-rotation spectrum of the SiH radical at 5 μm by laser magnetic resonance , 1984 .

[59]  S. Saito,et al.  Microwave spectroscopic study of the GeF radical , 1983 .

[60]  O. Strausz,et al.  Chemistry of carbynes: reaction of CF, CCl, and CBr with alkenes , 1983 .

[61]  Chul Park Shock-tube determination of absorption cross sections and A 2 Delta - X 2 Pi band transition moments of SiH , 1979 .

[62]  W. C. Lineberger,et al.  Laser photoelectron spectrometry of CH , 1975 .

[63]  W. C. Lineberger,et al.  Laser photoelectron spectrometry of the negative ions of silicon and its hydrides , 1975 .

[64]  A. J. Merer,et al.  Rotational Structure in Some Higher Excited States of the GeF Molecule , 1974 .

[65]  J. Margrave,et al.  Enthalpy of formation of germanium trifluoride , 1974 .

[66]  A. J. Merer,et al.  Rotational Structure in the A2Σ+, B2Σ+, and a4Σ− – X2Π Transitions of GeF , 1973 .

[67]  S. Cradock,et al.  Positive- and negative-ion formation due to the electron bombardment of germanium tetrafluoride , 1972 .

[68]  J. Billingsley The absorption and emission spectrum of silicon monoiodide , 1972 .

[69]  C. Bender,et al.  New theoretical evidence for the nonlinearity of the triplet ground state of methylene , 1970 .

[70]  R. D. Verma THE SPECTRUM OF SiH AND SiD , 1965 .

[71]  C. V. Jackson The spectrum of silicon hydride , 1930 .

[72]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[73]  B. Roos,et al.  On the Effects of Spin–Orbit Coupling on Molecular Properties: Dipole Moment and Polarizability of PbO and Spectroscopic Constants for the Ground and Excited States , 2004 .

[74]  N. A. Jackson,et al.  Rotational State-Specific Dynamics of SiF C2Δ−B2Σ+Collision-Induced Transfer , 1998 .

[75]  K. Pitzer,et al.  Relativistic quantum calculations of low-lying states of SnH: Comparisons with the electronic spectra of SnH and with the properties of PbH , 1984 .

[76]  O. Strausz,et al.  THE GAS PHASE CHEMISTRY OF CARBYNES1 , 1980 .

[77]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .