A Bernstein–Bézier Basis for Arbitrary Order Raviart–Thomas Finite Elements
暂无分享,去创建一个
[1] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[2] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[3] J. Schöberl,et al. High order Nédélec elements with local complete sequence properties , 2005 .
[4] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[5] Rida T. Farouki,et al. The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..
[6] Robert C. Kirby,et al. Fast simplicial quadrature-based finite element operators using Bernstein polynomials , 2012, Numerische Mathematik.
[7] Mark Ainsworth,et al. Computation of Maxwell eigenvalues on curvilinear domains using hp -version Nédélec elements , 2003 .
[8] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[9] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[10] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[11] John A. Evans,et al. Isogeometric Analysis , 2010 .
[12] Mark Ainsworth,et al. Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .
[13] S. Orszag. Spectral methods for problems in complex geometries , 1980 .
[14] G. W. Stewart,et al. Matrix algorithms , 1998 .
[15] I. Babuska,et al. Finite Element Analysis , 2021 .
[16] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[17] Mark Ainsworth,et al. Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..
[18] Larry L. Schumaker,et al. On super splines and finite elements , 1989 .
[19] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[20] Douglas N. Arnold,et al. Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.
[21] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[22] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[23] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[24] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[25] Tom Davis,et al. Opengl programming guide: the official guide to learning opengl , 1993 .