A Bernstein–Bézier Basis for Arbitrary Order Raviart–Thomas Finite Elements

A Bernstein–Bézier basis is developed for $${\varvec{H}}({{\mathrm{div}}})$$H(div)-conforming finite elements that gives a clear separation between the curls of the Bernstein basis for the polynomial discretization of the space $$H^1$$H1, and the noncurls that characterize the specific $${\varvec{H}}({{\mathrm{div}}})$$H(div) finite element space (Raviart–Thomas in our case). The resulting basis has two distinct components reflecting this separation with the basis functions in each component having a natural identification with a domain point, or node, on the element. It is shown that the basis retains the favorable properties of the Bernstein basis that were used in Ainsworth et al. (SIAM J Sci Comput 3087–3109, 2011) to develop efficient computational procedures for the application of the elements.

[1]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[2]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[3]  J. Schöberl,et al.  High order Nédélec elements with local complete sequence properties , 2005 .

[4]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[5]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[6]  Robert C. Kirby,et al.  Fast simplicial quadrature-based finite element operators using Bernstein polynomials , 2012, Numerische Mathematik.

[7]  Mark Ainsworth,et al.  Computation of Maxwell eigenvalues on curvilinear domains using hp -version Nédélec elements , 2003 .

[8]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[9]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[10]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[11]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[12]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[13]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[14]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[15]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[16]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[17]  Mark Ainsworth,et al.  Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..

[18]  Larry L. Schumaker,et al.  On super splines and finite elements , 1989 .

[19]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[20]  Douglas N. Arnold,et al.  Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.

[21]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[22]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[23]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[24]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[25]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .