Modelling of external corrosion propagation for buried pipelines based on stochastic processes

[1]  Wenxing Zhou,et al.  Probabilistic characterisation of metal-loss corrosion growth on underground pipelines based on geometric Brownian motion process , 2015 .

[2]  Y. Katano,et al.  Predictive model for pit growth on underground pipes , 2003 .

[3]  Delmo Santiago Vaitsman,et al.  Evaluation of the corrosivity of the soil through its chemical composition. , 2007, The Science of the total environment.

[4]  Digby D. Macdonald,et al.  Development of fast algorithms for estimating stress corrosion crack growth rate , 1999 .

[5]  Wenxing Zhou,et al.  Bayesian Model for Calibration of ILI Tools , 2012 .

[6]  Phil Hopkins,et al.  SMART PIGS AND DEFECT ASSESSMENT CODES: COMPLETING THE CIRCLE , 2004 .

[7]  Felipe Alexander Vargas Bazán,et al.  Stochastic process corrosion growth models for pipeline reliability , 2013 .

[8]  Yanfeng Ouyang,et al.  Optimal Clustering of Railroad Track Maintenance Jobs , 2014, Comput. Aided Civ. Infrastructure Eng..

[9]  R. Melchers Modeling of Marine Immersion Corrosion for Mild and Low-Alloy Steels—Part 1: Phenomenological Model , 2003 .

[10]  William A. Janos,et al.  Tail of the distribution of sums of log-normal variates , 1970, IEEE Trans. Inf. Theory.

[11]  Hao Qin,et al.  Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data , 2013 .

[12]  David Camacho,et al.  Adaptive k-Means Algorithm for Overlapped Graph Clustering , 2012, Int. J. Neural Syst..

[13]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[14]  I. Denison,et al.  Observations on the Behavior of Steel Corroding under Cathodic Control in Soils , 1939 .

[15]  Alfred Barbian,et al.  In-Line Inspection of High Pressure Transmission Pipelines: State-of-the-Art and Future Trends , 2012 .

[16]  Michael Havbro Faber,et al.  Hierarchical Modeling of Pipeline Defect Growth Subject to ILI Uncertainty , 2009 .

[17]  R. E. Melchers Pitting Corrosion of Mild Steel in Marine Immersion EnvironmentPart 2: Variability of Maximum Pit Depth, October 2004 , 2004 .

[18]  David I Blockley,et al.  The risk of vulnerable failure , 2002 .

[19]  M. Kamrunnahar,et al.  Data Mining of Experimental Corrosion Data Using Neural Network , 2006 .

[20]  Homayoun Najjaran,et al.  Fuzzy Expert System to Assess Corrosion of Cast/Ductile Iron Pipes from Backfill Properties , 2006, Comput. Aided Civ. Infrastructure Eng..

[21]  J. W. Provan,et al.  Part I: Development of a Markov Description of Pitting Corrosion , 1989 .

[22]  James L. Beck,et al.  Structural Model Updating and Health Monitoring with Incomplete Modal Data Using Gibbs Sampler , 2006, Comput. Aided Civ. Infrastructure Eng..

[23]  J. A. Ogilvy Model for predicting ultrasonic pulse-echo probability of detection , 1993 .

[24]  J. L. Bogdanoff,et al.  Application of Physical Laws to Parameter Estimation for Probabilistic Models of Cumulative Damage , 1990 .

[25]  Mahesh D. Pandey,et al.  Probabilistic Neural Network for Reliability Assessment of Oil and Gas Pipelines , 2002 .

[26]  J. M. Hallen,et al.  STATISTICAL CALIBRATION OF PIPELINE IN-LINE INSPECTION DATA , 2004 .

[27]  VASSILIS S. KODOGIANNIS,et al.  A Clustering-Based Fuzzy Wavelet Neural Network Model for Short-Term Load Forecasting , 2013, Int. J. Neural Syst..

[28]  Franck Schoefs,et al.  Development of a two-stage inspection process for the assessment of deteriorating infrastructure , 2010, Reliab. Eng. Syst. Saf..

[29]  D. Macdonald,et al.  Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation , 2004 .

[30]  P. M. Aziz Application of the Statistical Theory of Extreme Values To the Analysis of Maximum Pit Depth Data for Aluminum , 1956 .

[31]  John R. Rossum,et al.  PREDICTION OF PITTING RATES IN FERROUS METALS FROM SOIL PARAMETERS , 1969 .

[32]  Adrian E. Raftery,et al.  mclust Version 4 for R : Normal Mixture Modeling for Model-Based Clustering , Classification , and Density Estimation , 2012 .

[33]  E. S. Rodriguez,et al.  Part II: Development of a General Failure Control System for Estimating the Reliability of Deteriorating Structures , 1989 .

[34]  Wei Wang,et al.  Structural Reliability Assessment by Local Approximation of Limit State Functions Using Adaptive Markov Chain Simulation and Support Vector Regression , 2012, Comput. Aided Civ. Infrastructure Eng..

[35]  Hartmut Goedecke Ultrasonic or MFL inspection: Which technology is better for you , 2003 .

[36]  F. Caleyo,et al.  Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study , 2009 .

[37]  Murray W. F. Grabinsky,et al.  The role of soil in the external corrosion of cast iron water mains in Toronto, Canada , 2003 .

[38]  Hojjat Adeli,et al.  A probabilistic neural network for earthquake magnitude prediction , 2009, Neural Networks.

[39]  James L. Beck,et al.  Structural Health Monitoring via Measured Ritz Vectors Utilizing Artificial Neural Networks , 2006, Comput. Aided Civ. Infrastructure Eng..

[40]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[41]  Han Ping Hong,et al.  Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects , 1999 .

[42]  Alaa Chateauneuf,et al.  Maintenance planning under imperfect inspections of corroded pipelines , 2013 .

[43]  D. N. Geary Mixture Models: Inference and Applications to Clustering , 1989 .

[44]  Ka-Veng Yuen,et al.  Peak Ground Acceleration Estimation by Linear and Nonlinear Models with Reduced Order Monte Carlo Simulation , 2010, Comput. Aided Civ. Infrastructure Eng..

[45]  Homero Castaneda,et al.  Life Prediction Estimation of an Underground Pipeline Using Alternate Current Impedance and Reliability Analysis , 2004 .

[46]  Adrian E. Raftery,et al.  Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering , 2007, J. Classif..

[47]  Daniel Straub,et al.  Risk based inspection planning for structural systems , 2005 .

[48]  Satyandra K. Gupta,et al.  The critical soil moisture content in the underground corrosion of mild steel , 1979 .

[49]  C. D. Waard,et al.  Carbonic Acid Corrosion of Steel , 1975 .

[50]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[51]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[52]  Maria Rizzi,et al.  A supervised method for microcalcification cluster diagnosis , 2013, Integr. Comput. Aided Eng..

[53]  Hojjat Adeli,et al.  Enhanced probabilistic neural network with local decision circles: A robust classifier , 2010, Integr. Comput. Aided Eng..

[54]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Franck Schoefs,et al.  Assessment of ROC curves for inspection of random fields , 2009 .

[56]  H. Hong,et al.  Estimating extreme wind speed based on regional frequency analysis , 2014 .

[57]  D. M. Titterington,et al.  Multidimensional Markov Chain Models for Image Textures , 1991 .

[58]  F. Caleyo,et al.  Predictive Model for Pitting Corrosion in Buried Oil and Gas Pipelines , 2009 .

[59]  G. McLachlan,et al.  Extensions of the EM Algorithm , 2007 .

[60]  S. J. Dawson,et al.  Development of a Predictive Model for Pipeline External Corrosion Rates , 2007 .

[61]  Palle Thoft-Christensen,et al.  Optimal strategy for inspection and repair of structural systems , 1987 .

[62]  Andrzej Anderko,et al.  Computation of Rates of General Corrosion Using Electrochemical and Thermodynamic Models , 2001 .

[63]  Jian Zhang,et al.  Advanced Markov Chain Monte Carlo Approach for Finite Element Calibration under Uncertainty , 2013, Comput. Aided Civ. Infrastructure Eng..

[64]  F. Caleyo,et al.  Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits , 2007 .

[65]  Donavan Marney,et al.  The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils , 2012 .

[66]  Yichang Tsai,et al.  Automatic Detection of Deficient Video Log Images Using a Histogram Equity Index and an Adaptive Gaussian Mixture Model , 2010, Comput. Aided Civ. Infrastructure Eng..

[67]  George Antaki,et al.  Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair , 2003 .

[68]  Z. Szklarska‐Śmiałowska,et al.  Pitting Corrosion of Metals , 1986 .

[69]  Norman C. Beaulieu,et al.  An optimal lognormal approximation to lognormal sum distributions , 2004, IEEE Transactions on Vehicular Technology.

[70]  John F. Kiefner,et al.  Calculation Of A Corrosion Rate Using Monte Carlo Simulation , 2007 .

[71]  Hojjat Adeli,et al.  Wavelet‐Clustering‐Neural Network Model for Freeway Incident Detection , 2003 .

[72]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[73]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[74]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[75]  F. Caleyo,et al.  Markov chain modelling of pitting corrosion in underground pipelines , 2009 .

[76]  Francisco Caleyo,et al.  Criteria for performance assessment and calibration of in-line inspections of oil and gas pipelines , 2007 .

[77]  F. Kajiyama,et al.  Statistical Analyses of Field Corrosion Data for Ductile Cast Iron Pipes Buried in Sandy Marine Sediments , 1997 .

[78]  M. Norin,et al.  Corrosion of carbon steel in filling material in an urban environment , 2003 .

[79]  Wenxing Zhou,et al.  System reliability of corroding pipelines , 2010 .

[80]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[81]  J. H. Fitzgerald Evaluating soil corrosivity--Then and now , 1993 .

[82]  Liang Xuan,et al.  PROBABILITY OF DETECTION MODEL FOR GAS TRANSMISSION PIPELINE INSPECTION , 2004 .

[83]  Francisco Caleyo,et al.  A study on the reliability assessment methodology for pipelines with active corrosion defects , 2002 .

[84]  John Dalsgaard Sørensen,et al.  Reliability-Based Optimization in Structural Engineering , 1994 .

[85]  Franck Schoefs,et al.  Probabilistic modeling of inspection results for offshore structures , 2003 .

[86]  Han Ping Hong,et al.  RELIABILITY BASED OPTIMAL INSPECTION AND MAINTENANCE FOR PIPELINE UNDER CORROSION , 1997 .

[87]  Lynne B. Hare,et al.  Statistical Principles of Research Design and Analysis , 1995 .

[88]  Jorge L. Alamilla,et al.  Stochastic modelling of corrosion damage propagation in active sites from field inspection data , 2008 .

[89]  André T. Beck,et al.  Optimal inspection and design of onshore pipelines under external corrosion process , 2014 .

[90]  J. N. Murray,et al.  Influence of Moisture on Corrosion of Pipeline Steel in Soils Using In Situ Impedance Spectroscopy , 1989 .

[91]  David F. Barrero,et al.  A Genetic Graph-Based Approach for Partitional Clustering , 2014, Int. J. Neural Syst..

[92]  Sotirios Chatzis,et al.  A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation , 2008, IEEE Transactions on Fuzzy Systems.

[93]  Homayoun Najjaran,et al.  Exploring the Relationship between Soil Properties and Deterioration of Metallic Pipes Using Predictive Data Mining Methods , 2010, J. Comput. Civ. Eng..

[94]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[95]  Gad Frankel,et al.  Pitting Corrosion of Metals. A Review of the Critical Factors , 1998 .

[96]  J. Alamilla,et al.  Modelling steel corrosion damage in soil environment , 2009 .