Fracture and repair of bone: a multiscale problem

[1]  J. Nyman,et al.  Effect of ultrastructural changes on the toughness of bone. , 2005, Micron.

[2]  D B Burr,et al.  Targeted and nontargeted remodeling. , 2002, Bone.

[3]  R O Ritchie,et al.  Effect of aging on the toughness of human cortical bone: evaluation by R-curves. , 2004, Bone.

[4]  D B Burr,et al.  Calculating the probability that microcracks initiate resorption spaces. , 1993, Journal of biomechanics.

[5]  H. Frost Tetracycline-based histological analysis of bone remodeling , 2005, Calcified Tissue Research.

[6]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[7]  D. Vashishth Age-dependent biomechanical modifications in bone. , 2005, Critical reviews in eukaryotic gene expression.

[8]  M G Mullender,et al.  Mechanobiology of bone tissue. , 2005, Pathologie-biologie.

[9]  M. Rashid,et al.  A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload. , 2001, Journal of biomechanics.

[10]  Theo H Smit,et al.  Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon--a proposal. , 2003, Journal of biomechanics.

[11]  D. Taylor.,et al.  Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone , 2003, Journal of anatomy.

[12]  D. Fyhrie,et al.  A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. , 2003, Journal of biomechanics.

[13]  D. Eyre,et al.  Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. , 1988, The Biochemical journal.

[14]  D. Fyhrie,et al.  The morphological association between microcracks and osteocyte lacunae in human cortical bone. , 2005, Bone.

[15]  Fran Adar,et al.  Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. , 2004, Bone.

[16]  N L Fazzalari,et al.  Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. , 1998, Bone.

[17]  A. Boyde The real response of bone to exercise , 2003, Journal of anatomy.

[18]  S. Stover,et al.  The effect of hole diameter on the torsional mechanical properties of the equine third metacarpal bone. , 1996, Veterinary surgery : VS.

[19]  R. Alexander,et al.  Optimum strengths for bones liable to fatigue and accidental fracture. , 1984, Journal of theoretical biology.

[20]  David Taylor,et al.  The effect of bone microstructure on the initiation and growth of microcracks , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[21]  A. Ascenzi,et al.  The bending properties of single osteons. , 1990, Journal of biomechanics.

[22]  D. Taylor.,et al.  Scaling effects in the fatigue strength of bones from different animals. , 2000, Journal of theoretical biology.

[23]  O. Verborgt,et al.  Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  Mehdi Balooch,et al.  Role of microstructure in the aging-related deterioration of the toughness of human cortical bone , 2006 .

[25]  Ozan Akkus,et al.  Fracture mechanics of cortical bone tissue: a hierarchical perspective. , 2004, Critical reviews in biomedical engineering.

[26]  V. Kalscheur,et al.  Aging and accumulation of microdamage in canine bone. , 2002, Bone.

[27]  C. Rimnac,et al.  Fracture resistance of gamma radiation sterilized cortical bone allografts , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  David Taylor,et al.  Predicting stress fractures using a probabilistic model of damage, repair and adaptation , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[29]  R Vanderby,et al.  Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. , 2004, Bone.

[30]  P J Prendergast,et al.  Prediction of bone adaptation using damage accumulation. , 1994, Journal of biomechanics.

[31]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[32]  P Zioupos,et al.  The role of collagen in the declining mechanical properties of aging human cortical bone. , 1999, Journal of biomedical materials research.

[33]  F. O'Brien,et al.  An improved labelling technique for monitoring microcrack growth in compact bone. , 2002, Journal of biomechanics.

[34]  A J Bailey,et al.  Biochemical changes in the collagenous matrix of osteoporotic avian bone. , 1995, The Biochemical journal.

[35]  David Taylor,et al.  Predicting the fracture strength of ceramic materials using the theory of critical distances , 2004 .

[36]  Rik Huiskes,et al.  Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.

[37]  Hideaki Takahashi Mechanical Loading of Bones and Joints , 1999, Springer Japan.

[38]  D Vashishth,et al.  In vivo diffuse damage in human vertebral trabecular bone. , 2000, Bone.

[39]  A Staines,et al.  Bone adaptation to load: microdamage as a stimulus for bone remodelling , 2002, Journal of anatomy.

[40]  D P Fyhrie,et al.  Intracortical remodeling in adult rat long bones after fatigue loading. , 1998, Bone.

[41]  David Taylor,et al.  Mechanisms of short crack growth at constant stress in bone. , 2006, Biomaterials.

[42]  J. Nyman,et al.  The influence of water removal on the strength and toughness of cortical bone. , 2006, Journal of biomechanics.

[43]  R. Lakes,et al.  Fracture mechanics of bone with short cracks. , 1990, Journal of biomechanics.

[44]  B. Martin,et al.  Mathematical model for repair of fatigue damage and stress fracture in osteonal bone , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[45]  R. Martin Fatigue damage, remodeling, and the minimization of skeletal weight. , 2003, Journal of theoretical biology.

[46]  D Vashishth,et al.  Experimental validation of a microcracking-based toughening mechanism for cortical bone. , 2003, Journal of biomechanics.

[47]  R. McN. Alexander,et al.  The thickness of the walls of tubular bones , 2009 .

[48]  R. Ritchie,et al.  Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. , 2005, Biomaterials.

[49]  E. Meroi,et al.  A review of the biomechanical properties of bone as a material. , 1989, Journal of biomedical engineering.

[50]  Friedrich Pauwels,et al.  Biomechanics of the Locomotor Apparatus , 1980 .

[51]  C. M. Agrawal,et al.  Age-Related Changes of Noncalcified Collagen in Human Cortical Bone , 2003, Annals of Biomedical Engineering.

[52]  D. Taylor.,et al.  Visualisation of three‐dimensional microcracks in compact bone , 2000, Journal of anatomy.

[53]  O. Akkus,et al.  Microcracks colocalize within highly mineralized regions of cortical bone tissue. , 2005, European journal of morphology.

[54]  S. Stover,et al.  Equine cortical bone exhibits rising R-curve fracture mechanics. , 2003, Journal of biomechanics.

[55]  C. Rimnac,et al.  Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth. , 2001, Journal of biomechanics.

[56]  J. Currey,et al.  Effects of differences in mineralization on the mechanical properties of bone. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  M. Markel,et al.  Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. , 2006, Bone.