Molecular simulation-derived features for machine learning predictions of metal glass forming ability

[1]  A. Feng,et al.  Structural origin of the enhancement in glass-forming ability of binary Ni-Nb metallic glasses , 2021, Journal of Non-Crystalline Solids.

[2]  D. V. Louzguine-Luzgin,et al.  Crystallization of FCC and BCC Liquid Metals Studied by Molecular Dynamics Simulation , 2020, Metals.

[3]  Ruijie Deng,et al.  A new mathematical expression for the relation between characteristic temperature and glass-forming ability of metallic glasses , 2020 .

[4]  Jie Xiong,et al.  A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys , 2020, Materials & Design.

[5]  Ryan Jacobs,et al.  The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research , 2019, Computational Materials Science.

[6]  K. Flores,et al.  Are hints about glass forming ability hidden in the liquid structure? , 2019, Acta Materialia.

[7]  B. Zhang,et al.  Structural origin of the high glass-forming ability of Ce70Ga10Cu20 alloys. , 2019, Physical chemistry chemical physics : PCCP.

[8]  Logan T. Ward,et al.  A machine learning approach for engineering bulk metallic glass alloys , 2018, Acta Materialia.

[9]  Christopher Wolverton,et al.  Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments , 2018, Science Advances.

[10]  J. Schroers,et al.  How Many Bulk Metallic Glasses Are There? , 2017, ACS combinatorial science.

[11]  G. Bokas,et al.  Microalloying effects in ternary Cu-Zr-X (X = Be, Mg, Al, Si, P, Nb, Ag) icosahedral clusters and super-clusters from Density Functional Theory computations , 2017 .

[12]  S. Wu,et al.  Structural mechanism of the enhanced glass-forming ability in multicomponent alloys with positive heat of mixing , 2016, Scientific Reports.

[13]  I. Szlufarska,et al.  On the role of Sm in solidification of Al-Sm metallic glasses , 2016, 1608.01226.

[14]  Logan T. Ward,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016, 1606.09551.

[15]  B. S. Murty,et al.  Critical evaluation of glass forming ability criteria , 2016 .

[16]  Z. Hou,et al.  A DFT study on the heredity-induced coalescence of icosahedral basic clusters in the rapid solidification , 2015 .

[17]  D. Morgan,et al.  Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation , 2014 .

[18]  A Hirata,et al.  Geometric Frustration of Icosahedron in Metallic Glasses , 2013, Science.

[19]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[20]  G. Bokas,et al.  Clustering, microalloying and mechanical properties in Cu/Zr-based glassy models by molecular dynamics simulations and ab-initio computations , 2012 .

[21]  M. Kramer,et al.  Highly optimized embedded-atom-method potentials for fourteen fcc metals , 2011 .

[22]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[23]  P. W. Wang,et al.  On the heating rate dependence of crystallization temperatures of metallic glasses , 2010 .

[24]  M. Kramer,et al.  Applications of an extended Miedema's model for ternary alloys , 2010 .

[25]  Weiqi Wang,et al.  Bulk Metallic Glasses with Functional Physical Properties , 2009 .

[26]  A. Inoue,et al.  A new criterion for predicting the glass-forming ability of bulk metallic glasses , 2009 .

[27]  Y. Shibutani,et al.  Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys , 2007 .

[28]  Zushu Hu,et al.  New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems , 2007 .

[29]  M. Ashby,et al.  Metallic glasses as structural materials , 2006 .

[30]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[31]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[32]  S. Auerbach,et al.  Diffusion in Zeolites , 2003 .

[33]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[34]  J. J. Broek,et al.  Thermodynamics of the stability of amorphous alloys of two transition metals , 1988 .

[35]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[36]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[37]  A. Inoue,et al.  Bulk Metallic Glasses: Formation and Applications , 2014 .

[38]  汪卫华,et al.  Binary Cu-Zr Bulk Metallic Glasses , 2004 .

[39]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .