Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors

An increasingly popular tool for nonparametric smoothing are penalized splines (P-splines) which use low-rank spline bases to make computations tractable while maintaining accuracy as good as smoothing splines. This paper extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. These extensions have been studied before, but never together and never in the multivariate case. This combination is needed for satisfactory inference and can be implemented effectively by Bayesian \mbox{MCMC}. The variance process controlling the spatially-adaptive shrinkage of the mean and the variance of the heteroscedastic error process are modeled as log-penalized splines. We discuss the choice of priors and extensions of the methodology,in particular, to multivariate smoothing using low-rank thin plate splines. A fully Bayesian approach provides the joint posterior distribution of all parameters, in particular, of the error standard deviation and penalty functions. In the multivariate case we produce maps of the standard deviation and penalty functions. Our methodology can be implemented using the Bayesian software WinBUGS.

[1]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[2]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[3]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[4]  R. Gray,et al.  Spline-based tests in survival analysis. , 1994, Biometrics.

[5]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[6]  J. N. Cape Air monitoring by spectroscopic techniques: Chemical analysis vol. 127. Monographs on analytical chemistry and applications series. Edited by M. W. Sigrist. John Wiley & Sons Inc., New York, USA, 1994, 531 pp. Price: £66.00 , 1995 .

[7]  Hans Edner,et al.  Locally weighted least squares kernel regression and statistical evaluation of LIDAR measurements , 1996 .

[8]  David Ruppert Local Polynomial Regression and Its Applications in Environmental Statistics , 1996 .

[9]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[10]  R. Kohn,et al.  A Bayesian approach to nonparametric bivariate regression , 1997 .

[11]  Douglas W. Nychka,et al.  Design of Air-Quality Monitoring Networks , 1998 .

[12]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[13]  Matt P. Wand,et al.  A Comparison of Regression Spline Smoothing Procedures , 2000, Comput. Stat..

[14]  David Ruppert,et al.  Theory & Methods: Spatially‐adaptive Penalties for Spline Fitting , 2000 .

[15]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[16]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[17]  Spatially Adaptive Bayesian Regression Splines SUMMARY , 2002 .

[18]  Ludwig Fahrmeir,et al.  Function estimation with locally adaptive dynamic models , 2002, Comput. Stat..

[19]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[20]  R. Carroll Variances Are Not Always Nuisance Parameters , 2003 .

[21]  S. Gupta,et al.  Variances are Not Always Nuisance Parameters The 2002 , 2003 .

[22]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[23]  M. Wand,et al.  Geoadditive models , 2003 .

[24]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[25]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[26]  M. Wand,et al.  Smoothing with Mixed Model Software , 2004 .

[27]  Veerabhadran Baladandayuthapani,et al.  Spatially Adaptive Bayesian Penalized Regression Splines (P-splines) , 2005 .

[28]  Ciprian M. Crainiceanu,et al.  Bayesian Analysis for Penalized Spline Regression Using WinBUGS , 2005 .