Electrochemical Properties of Monoclinic NaNiO2

Monoclinic α- NaMnO2 is re-investigated electrochemically as a positive electrode material for sodium ion batteries. About 0.85 Na can be deintercalated from NaMnO2 and 0.8 Na be intercalated back during potentiostatical intermittent charge and discharge. Galvanostatical cycling between 2.0 V and 3.8 V gives 185 mAh/g discharge capacity for the first cycle at C/10 rate and 132 mAh/g remains after 20 cycles. Charge and discharge curves are significantly different indicating more hysteresis than is typical for lithium intercalation compounds. We also explain the remarkable difference between layered LiMnO2 and NaMnO2 upon alkali removal.

[1]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[2]  G. Ceder,et al.  Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. , 2004, Chemical reviews.

[3]  Takayuki Shirane Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction , 1995 .

[4]  M. Doeff,et al.  Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2 , 2004 .

[5]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[6]  G. Ceder,et al.  Size and charge effects on the structural stability of LiMO2 (M = transition metal) compounds , 1998 .

[7]  Yasuko Terada,et al.  Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique , 2001 .

[8]  S. Kemmler‐sack,et al.  Synthesis of LiMnO2 and LiFeO2 in molten Li halides , 1994 .

[9]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[10]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[11]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[12]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[13]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[14]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[15]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[16]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[17]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[18]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[19]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[20]  H. Sakaebe,et al.  Li+/Na+ exchange from α-NaFeO2 using hydrothermal reaction , 1996 .

[21]  T. A. Hewston,et al.  A Survey of first-row ternary oxides LiMO2 (M = Sc-Cu) , 1987 .

[22]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[23]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[24]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[25]  R. Cava,et al.  Sodium ion ordering in NaxCoO2: Electron diffraction study , 2004 .

[26]  J. Dahn,et al.  Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange , 1999 .

[27]  G. Prado,et al.  Lithium batteries: a new tool in solid state chemistry , 1999 .

[28]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[29]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[30]  Anton Van der Ven,et al.  Phase diagrams of lithium transition metal oxides: investigations from first principles , 1999 .

[31]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[32]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[33]  T. Zeiske,et al.  The structure of monoclinic NaNiO2 as determined by powder X-ray and neutron scattering , 1997, Powder Diffraction.

[34]  S. Kikkawa,et al.  Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ Cr, Fe, Co, Ni) , 1983 .

[35]  J. Molenda Correlation between electronic and electrochemical properties of AxMO2-type electrode materials. Electronic criterion , 1986 .

[36]  M. Osada,et al.  Synthesis and electrochemistry of new layered (1 − x)LiVO2·xLi2TiO3 (0 ≤ x ≤ 0.6) electrode materials , 2007 .

[37]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[38]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[39]  B. Borie,et al.  Alkali Metal-Nickel Oxides of the Type MNiO2 , 1954 .

[40]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[41]  J. Molenda,et al.  Electronic and electrochemical properties of nickel bronze, NaxNiO2 , 1990 .

[42]  C. Darie,et al.  Study of the ferrodistorsive orbital ordering in NaNiO2 by neutron diffraction and submillimeter wave ESR , 2000 .

[43]  Kristin A. Persson,et al.  First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium , 2008 .

[44]  S. Kikkawa,et al.  Electrochemical aspects of the deintercalation of layered AMO2 compounds , 1985 .

[45]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[46]  M. Jansen,et al.  Zur Kenntnis der NaCl-Strukturfamilie Die Kristallstruktur von NaMnO2 , 1973 .

[47]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[48]  P. Kumta,et al.  Phase Stability and Electronic Structure of NaMnO2 , 2003 .

[49]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[50]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[51]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[52]  G. Brachtel,et al.  Zur Kenntnis der Oxomanganate(III):, Über LiMnO2 und β‐NaMnO2 [1] , 1975 .