On the Bloch decomposition based spectral method for wave propagation in periodic media

Abstract We extend the Bloch-decomposition based time-splitting spectral method introduced in an earlier paper [Z. Huang, S. Jin, P. Markowich, C. Sparber, A Bloch decomposition based split-step pseudo spectral method for quantum dynamics with periodic potentials, SIAM J. Sci. Comput. 29 (2007) 515–538] to the case of (non-)linear Klein–Gordon equations. This provides us with an unconditionally stable numerical method which achieves spectral convergence in space, even in the case where the periodic coefficients are highly oscillatory and/or discontinuous. A comparison to a traditional pseudo-spectral method and to a finite difference/volume scheme shows the superiority of our method. We further estimate the stability of our scheme in the presence of random perturbations and give numerical evidence for the well-known phenomenon of Anderson’s localization.

[1]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[2]  C. Wilcox Theory of Bloch waves , 1978 .

[3]  P. Robinson Wave propagation in disordered media , 2000 .

[4]  Kirkpatrick,et al.  Resonant scattering and Anderson localization of acoustic waves. , 1987, Physical review. B, Condensed matter.

[5]  The mathematics of light pulses in dispersive media , 2007 .

[6]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[7]  Laurent Gosse,et al.  The numerical spectrum of a one-dimensional Schrödinger operator with two competing periodic potentials , 2007 .

[8]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[9]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[10]  Randall J. LeVeque,et al.  High-resolution finite-volume methods for acoustic waves in periodic and random media , 1999 .

[11]  J. Fröhlich,et al.  A rigorous approach to Anderson localization , 1984 .

[12]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[13]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems , 2004 .

[14]  Kurt Busch,et al.  Justification of the nonlinear Schrödinger equation in spatially periodic media , 2006 .

[15]  D. M. Mead,et al.  WAVE PROPAGATION IN CONTINUOUS PERIODIC STRUCTURES: RESEARCH CONTRIBUTIONS FROM SOUTHAMPTON, 1964–1995 , 1996 .

[16]  Grégoire Allaire,et al.  Dispersive limits in the homogenization of the wave equation , 2003 .

[17]  Shi Jin,et al.  Numerical Simulation of the Nonlinear Schrödinger Equation with Multidimensional Periodic Potentials , 2008, Multiscale Model. Simul..

[18]  Cohen,et al.  Existence of Anderson localization of classical waves in a random two-component medium. , 1989, Physical review letters.

[19]  Richard L. Weaver Anderson localization in the time domain: Numerical studies of waves in two‐dimensional disordered media , 1993 .

[20]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[21]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[22]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[23]  Chi-Kun Lin,et al.  A REVIEW OF DISPERSIVE LIMITS OF (NON)LINEAR SCHR¨ODINGER-TYPE EQUATIONS , 2000 .

[24]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrödinger-Poisson , 2006 .

[25]  M D.J.,et al.  WAVE PROPAGATION IN CONTINUOUS PERIODIC STRUCTURES : RESEARCH CONTRIBUTIONS FROM SOUTHAMPTON , 1964 – 1995 , 2022 .

[26]  Shi Jin,et al.  A Bloch Decomposition-Based Split-Step Pseudospectral Method for Quantum Dynamics with Periodic Potentials , 2007, SIAM J. Sci. Comput..

[27]  Chunxiong Zheng,et al.  A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.

[28]  J. Kevorkian,et al.  Multiple‐scale Homogenization for Weakly Nonlinear Conservation Laws with Rapid Spatial Fluctuations , 1998 .

[29]  G. V. Chester,et al.  Solid State Physics , 2000 .

[30]  Philip W. Anderson,et al.  The question of classical localization A theory of white paint , 1985 .

[31]  P. Markowich,et al.  A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .

[32]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .