Effects of Biodynamic Feedthrough in Rotorcraft/Pilot Coupling: Collective Bounce Case

This paper discusses the aeroelastic interaction between the helicopter and the pilot called collective bounce. The problem is mostly studied in the time domain, using the multibody system dynamics approach to model the dynamics of the vehicle and the aeroelasticity of the main rotor and a linear or quasilinear transfer function approach for the voluntary and involuntary dynamics of the pilot. Different models are considered for the aerodynamic forces acting on the rotor, ranging from blade-element/momentum theory to a boundary-element method used independently and in cosimulation with the multibody model. The problem is analyzed in hover and forward flight, highlighting modeling requirements and the sensitivity of the stability results to a variety of parameters of the problem.

[1]  David A. Peters,et al.  Theoretical prediction of dynamic inflow derivatives , 1980 .

[2]  Giuseppe Quaranta,et al.  An Investigation of Aeroelastic Rotorcraft-Pilot Interaction , 2011 .

[3]  Ezra S. Krendel,et al.  Mathematical Models of Human Pilot Behavior , 1974 .

[4]  David H. Klyde,et al.  Unified Pilot-Induced Oscillation Theory. Volume 1. PIO Analysis with Linear and Nonlinear Effective Vehicle Characteristics, Including Rate Limiting. , 1995 .

[5]  Gareth D. Padfield,et al.  Flight Simulation in Academia HELIFLIGHT in its First Year of Operation , 2001 .

[6]  Duane T. McRuer,et al.  PILOT-INDUCED OSCILLATIONS: THEIR CAUSE AND ANALYSIS , 1964 .

[7]  Duane T. McRuer,et al.  A Review of Quasi-Linear Pilot Models , 1967 .

[8]  Gregory J. Wilson,et al.  Test Approaches To External Sling Load Instabilities , 1968 .

[9]  Frans C. T. van der Helm,et al.  A practical biodynamic feedthrough model for helicopters , 2013 .

[10]  Michael Jump,et al.  Adverse Rotorcraft-Pilot Couplings - Prediction and Suppression of Rigid Body RPC , 2008 .

[11]  Massimo Gennaretti,et al.  An optimal control approach for alleviation of tiltrotor gust response , 2012, The Aeronautical Journal (1968).

[12]  Ronald A. Hess Theory for aircraft handling qualities based upon a structural pilotmodel , 1989 .

[13]  Joost Venrooij,et al.  Measuring biodynamic feedthrough in helicopters , 2011 .

[14]  Giuseppe Quaranta,et al.  Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft–pilot coupling analysis , 2013 .

[15]  Paolo Mantegazza,et al.  Multibody Simulation of Integrated Tiltrotor Flight Mechanics, Aeroelasticity, and Control , 2012 .

[16]  Giovanni Bernardini,et al.  Novel Boundary Integral Formulation for Blade-Vortex Interaction Aerodynamics of Helicopter Rotors , 2007 .

[17]  David G. Mitchell,et al.  Identifying a PIO Signature - New Techniques Applied to an Old Problem , 2006 .

[18]  Giovanni Bernardini,et al.  Aeroelastic response of helicopter rotors using a 3D unsteady aerodynamic solver , 2006, The Aeronautical Journal (1968).

[19]  W. A. Kuczynski,et al.  The Influence of Engine/Fuel Control Design on Helicopter Dynamics and Handling Qualities , 1979 .

[20]  David G. Mitchell,et al.  Recommended Practices for Exposing Pilot-Induced Oscillations or Tendencies in the Development Process , 2004 .

[21]  Giuseppe Quaranta,et al.  Further Results of Soft-Inplane Tiltrotor Aeromechanics Investigation Using Two Multibody Analyses , 2004 .

[22]  Giovanni Bernardini,et al.  Fully Coupled Structural-Unsteady Aerodynamics Modelling for Aeroelastic Response of Rotorcraft , 2011 .

[23]  Michael Jump,et al.  Adverse rotorcraft-pilot coupling: Test campaign development at the University of Liverpool , 2008 .

[24]  Giuseppe Quaranta,et al.  Aeroservoelastic Analysis of Rotorcraft-Pilot Coupling: a Parametric Study , 2010 .

[25]  Massimo Gennaretti,et al.  Influence of Fuselage Dynamics Properties on Rotorcraft-Pilot Coupling Phenomena , 2009 .

[26]  M. Degener,et al.  Investigations of Helicopter Structural Dynamics and a Comparison with Ground Vibration Tests , 1982 .

[27]  Massimo Gennaretti,et al.  Adverse rotorcraft-pilot coupling: Recent research activities in Europe , 2008 .

[28]  Giovanni Bernardini,et al.  Prediction of Tiltrotor Vibratory Loads with Inclusion of Wing­-Proprotor Aerodynamic Interaction , 2010 .

[29]  Hafid Smaili,et al.  Aircraft and Rotorcraft Pilot Coupling: A Survey of Recent Research Activities Within the European Project ARISTOTEL , 2011 .

[30]  Duane T. McRuer,et al.  Comparison of the human optimal control and crossover models , 1988 .

[31]  Walden,et al.  A Retrospective Survey of Pilot-Structural Coupling Instabilities in Naval Rotorcraft , 2007 .

[32]  Paolo Mantegazza,et al.  Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition , 2004 .

[33]  Giuseppe Quaranta,et al.  Soft-Inplane Tiltrotor Aeromechanics Investigation Using Two Comprehensive Multibody Solvers , 2008 .

[34]  Pierangelo Masarati,et al.  Modeling a Stiff-Inplane Tiltrotor Using Two Multibody Analyses: a Validation Study , 2008 .

[35]  Massimo Gennaretti,et al.  Prediction of Rotorcraft-Pilot Coupling Phenomena Through Reduced-Order Aerodynamic Model , 2009 .

[36]  Roger Douglas Connor Wrecked Rotors: Understanding Rotorcraft Accidents, 1935-1945 , 2010 .

[37]  Massimo Gennaretti,et al.  Multiblade Reduced-Order Aerodynamics for State-Space Aeroelastic Modeling of Rotors , 2012 .