Modal identification using the frequency-scale domain decomposition technique of ambient vibration responses

Abstract This paper proposes a new modal identification method of ambient vibration responses. The application of the singular value decomposition to continuous wavelet transform of power spectral density matrix gives singular values and singular vectors in frequency-scale domain. Analytical development shows a direct relation between local maxima in frequency-scale representation of singular values and modal parameters. This relation is then carried on for the identification of modal parameters via a complete practical procedure. The main novelties of this work involve the new formulation in frequency-scale domain and the capacity for the identification of modal parameters without the step of ridges extraction in comparison with previous wavelet-based modal identification methods.

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[2]  Joseph Lardies,et al.  Identification of modal parameters using the wavelet transform , 2002 .

[3]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis, Volume 9: Gabor and Wavelet Transforms, with an Implementation in S , 1998 .

[4]  P. Argoul,et al.  Transformations intégrales et identification modale , 1999 .

[5]  Pierre Argoul,et al.  Distinction between harmonic and structural components in ambient excitation tests using the time–frequency domain decomposition technique , 2015 .

[6]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[7]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[8]  Reza Tarinejad,et al.  Modal identification of structures by a novel approach based on FDD-wavelet method , 2014 .

[9]  Jean-Claude Golinval,et al.  Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures , 2001 .

[10]  Denis Duhamel,et al.  Natural frequencies and damping estimation using wavelet transform of a frequency response function , 2004 .

[12]  Palle Andersen,et al.  Modal Identification from Ambient Responses using Frequency Domain Decomposition , 2000 .

[13]  T. Le,et al.  Continuous wavelet transform for modal identification using free decay response , 2004 .

[14]  S. R. Ibrahim,et al.  Modal Parameter Identification from Responses of General Unknown Random Inputs , 1995 .

[15]  J. Slavič,et al.  Damping identification using a continuous wavelet transform: application to real data , 2003 .

[16]  Reza Tarinejad,et al.  Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors , 2016 .

[17]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[18]  M. Greenberg Advanced Engineering Mathematics , 1988 .

[19]  Carlos E. Ventura,et al.  Damping estimation by frequency domain decomposition , 2001 .

[20]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  P. Paultre,et al.  Modal identification based on the time–frequency domain decomposition of unknown-input dynamic tests , 2013 .

[23]  Patrick Paultre,et al.  Modal identification based on continuous wavelet transform and ambient excitation tests , 2012 .

[24]  W. Staszewski IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .