Context-Aware Ene rgy Enha ncements for Smart Mobile Device s

Abs trac t— Within the pas t decade , mobile computing has morphed into a principa l form of human communica tion, bus iness , and socia l inte raction. Unfortuna te ly, the energy demands of newer ambient inte lligence and collabora tive technologies on mobile devices have grea tly overwhelmed modern energy s torage abilities . This paper proposes severa l nove l techniques tha t exploit spa tiotempora l and device context to predict device wire less da ta and loca tion inte rface configura tions tha t can optimize energy consumption in mobile devices . These techniques , which include variants of linear discriminant ana lys is , linear logis tic regress ion, non-linear logis tic regress ion with neura l ne tworks , k-neares t ne ighbor, and support vector machines are explored and compared on synthe tic and user traces from rea l-world usage s tudies . The experimenta l results show tha t up to 90% success ful prediction is poss ible with neura l ne tworks and k-neares t ne ighbor a lgorithms , improving upon prediction s tra tegies in prior work by approximate ly 50%. Further, an average improvement of 24% energy savings is achieved compared to s ta te -of-the -art prior work on energy-efficient loca tionsens ing.

[1]  M. F. Møller,et al.  Efficient Training of Feed-Forward Neural Networks , 1993 .

[2]  Nikil D. Dutt,et al.  Reducing Backlight Power Consumption for Streaming Video Applications on Mobile Handheld Devices , 2003, ESTImedia.

[3]  Nikil D. Dutt,et al.  Dynamic backlight adaptation for low-power handheld devices , 2004, IEEE Design & Test of Computers.

[4]  Hojung Cha,et al.  A selective DVS technique based on battery residual , 2006, Microprocess. Microsystems.

[5]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[6]  James A. Landay,et al.  MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones , 2007, MobiSys '07.

[7]  Stathes Hadjiefthymiades,et al.  Predicting the location of mobile users: a machine learning approach , 2009, ICPS '09.

[8]  Yi Wang,et al.  A framework of energy efficient mobile sensing for automatic user state recognition , 2009, MobiSys '09.

[9]  Arun Venkataramani,et al.  Energy consumption in mobile phones: a measurement study and implications for network applications , 2009, IMC '09.

[10]  Fehmi Ben Abdesslem,et al.  Less is more: energy-efficient mobile sensing with senseless , 2009, MobiHeld '09.

[11]  Gokhan Memik,et al.  Into the wild: Studying real user activity patterns to guide power optimizations for mobile architectures , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[12]  Henrik Petander,et al.  Energy-aware network selection using traffic estimation , 2009, MICNET '09.

[13]  Romit Roy Choudhury,et al.  EnLoc: Energy-Efficient Localization for Mobile Phones , 2009, IEEE INFOCOM 2009.

[14]  Feng Zhao,et al.  Energy-accuracy trade-off for continuous mobile device location , 2010, MobiSys '10.

[15]  Dongsoo Han,et al.  Energy-Efficient Location Logging for Mobile Device , 2010, 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet.

[16]  Teddy Mantoro,et al.  Mobile user location determination using extreme learning machine , 2010, Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M) 2010.

[17]  Clayton Shepard,et al.  LiveLab: measuring wireless networks and smartphone users in the field , 2011, SIGMETRICS Perform. Evaluation Rev..

[18]  Feng Qian,et al.  TOP: Tail Optimization Protocol For Cellular Radio Resource Allocation , 2010, The 18th IEEE International Conference on Network Protocols.

[19]  Joongheon Kim,et al.  Energy-efficient rate-adaptive GPS-based positioning for smartphones , 2010, MobiSys '10.

[20]  Kazuhisa Ishizaka,et al.  Power Saving in Mobile Devices Using Context-Aware Resource Control , 2010, 2010 First International Conference on Networking and Computing.

[21]  Deborah Estrin,et al.  Diversity in smartphone usage , 2010, MobiSys '10.

[22]  Jatinder Pal Singh,et al.  Improving energy efficiency of location sensing on smartphones , 2010, MobiSys '10.

[23]  Ramesh Govindan,et al.  Energy-delay tradeoffs in smartphone applications , 2010, MobiSys '10.

[24]  Mohamed N. El-Derini,et al.  GAC: Energy-Efficient Hybrid GPS-Accelerometer-Compass GSM Localization , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[25]  Mark L. Chang,et al.  Movement detection for power-efficient smartphone WLAN localization , 2010, MSWIM '10.

[26]  James Won-Ki Hong,et al.  Usage pattern analysis of smartphones , 2011, 2011 13th Asia-Pacific Network Operations and Management Symposium.

[27]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[28]  Feng Qian,et al.  Profiling resource usage for mobile applications: a cross-layer approach , 2011, MobiSys '11.

[29]  Sudeep Pasricha,et al.  AURA: An application and user interaction aware middleware framework for energy optimization in mobile devices , 2011, 2011 IEEE 29th International Conference on Computer Design (ICCD).

[30]  Sahin Albayrak,et al.  Context-aware device self-configuration using self-organizing maps , 2011, OC '11.

[31]  Steven Swanson,et al.  Greendroid: Exploring the next evolution in smartphone application processors , 2011, IEEE Communications Magazine.

[32]  Clayton Shepard,et al.  Characterizing web use on smartphones , 2012, CHI.

[33]  Enhong Chen,et al.  Learning to Infer the Status of Heavy-Duty Sensors for Energy-Efficient Context-Sensing , 2012, TIST.