Untangling Complex Redox Chemistry in Zeolitic Imidazolate Frameworks Using Fourier Transformed Alternating Current Voltammetry.

Two zeolitic imidazolate frameworks, ZIF-67 and ZIF-8, were interrogated for their redox properties using Fourier transformed alternating current voltammetry, which revealed that the 2-methylimidazolate ligand is responsible for multiple redox transformations. Further insight was gained by employing discrete tetrahedral complexes, [M(DMIM)4]2+ (DMIM = 1,2-dimethylimidazole, M = CoII or ZnII) which have similar structural motifs to ZIFs. In this work we demonstrate a multidirectional approach that enables the complex electrochemical behavior of ZIFs to be unraveled.

[1]  Alan M. Bond,et al.  Modelling ac voltammetry with MECSim: facilitating simulation–experiment comparisons , 2017 .

[2]  Chanel F. Leong,et al.  Intrinsically conducting metal–organic frameworks , 2016 .

[3]  D. D’Alessandro Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. , 2016, Chemical communications.

[4]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[5]  Thomas A. Yersak,et al.  MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion , 2015 .

[6]  D. D’Alessandro,et al.  The Electrochemical Transformation of the Zeolitic Imidazolate Framework ZIF-67 in Aqueous Electrolytes , 2015 .

[7]  D. D’Alessandro,et al.  Experimental and computational studies of a multi-electron donor-acceptor ligand containing the thiazolo[5,4-d]thiazole core and its incorporation into a metal-organic framework. , 2014, Chemistry.

[8]  D. D’Alessandro,et al.  Magnetic, electrochemical and optical properties of a sulfate-bridged Co(II) imidazole dimer , 2014 .

[9]  Kunio Awaga,et al.  Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. , 2014, Journal of the American Chemical Society.

[10]  D. D’Alessandro,et al.  Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation , 2014 .

[11]  Feng Liu,et al.  Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. , 2014, Journal of the American Chemical Society.

[12]  A. Bond,et al.  Inappropriate use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit. , 2014, Analytical chemistry.

[13]  D. D’Alessandro,et al.  A Mn(II) coordination framework incorporating the redox-active tris(4-(pyridin-4-yl)phenyl)amine ligand (NPy3): electrochemical and spectral properties , 2014 .

[14]  A. Bond,et al.  A critical review of the methods available for quantitative evaluation of electrode kinetics at stationary macrodisk electrodes , 2014 .

[15]  Y. Gong,et al.  Metal(II)-Induced Coordination Polymer Based on 4-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)benzoate as an Electrocatalyst for Water Splitting , 2014 .

[16]  C. C. Epley,et al.  Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. , 2014, Journal of the American Chemical Society.

[17]  Mircea Dincă,et al.  Facile deposition of multicolored electrochromic metal-organic framework thin films. , 2013, Angewandte Chemie.

[18]  Jonathan E. Halls,et al.  Chapter 6:Electrochemistry within metal-organic frameworks , 2013 .

[19]  D. D’Alessandro,et al.  Electronic, optical, and computational studies of a redox-active napthalenediimide-based coordination polymer. , 2013, Inorganic chemistry.

[20]  D. D’Alessandro,et al.  Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework. , 2013, Dalton transactions.

[21]  D. D’Alessandro,et al.  Electrochemical and optical properties of a redox-active Cu(II) coordination framework incorporating the tris(4-(pyridin-4-yl)phenyl)amine ligand. , 2013, Dalton transactions.

[22]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[23]  Xian‐Wen Wei,et al.  Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks , 2012 .

[24]  D. D’Alessandro,et al.  Rapid determination of the optical and redox properties of a metal-organic framework via in situ solid state spectroelectrochemistry. , 2012, Chemical communications.

[25]  Jonathan E. Halls,et al.  Metal-organic frameworks post-synthetically modified with ferrocenyl groups: framework effects on redox processes and surface conduction. , 2012, Dalton transactions.

[26]  D. D’Alessandro,et al.  Towards Conducting Metal-Organic Frameworks , 2011 .

[27]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[28]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[29]  H. García,et al.  Electrochemistry of Metal−Organic Frameworks: A Description from the Voltammetry of Microparticles Approach , 2007 .

[30]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[31]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[32]  Jie Zhang,et al.  Changing the Look of Voltammetry , 2005 .

[33]  Song Gao,et al.  The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. , 2003, Chemistry.

[34]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[35]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[36]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[37]  J. Strojek,et al.  In Situ FT-IR/ATR Spectroelectrochemistry of Prussian Blue in the Solid State , 1996 .

[38]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[39]  Jack E. Fernandez,et al.  Electrochemical and Chemical Polymerization of Imidazole and Some of Its Derivatives , 1994 .

[40]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .