Guidelines for RNA-seq projects: applications and opportunities in non-model decapod crustacean species

[1]  W. Stein,et al.  Clonal genome evolution and rapid invasive spread of the marbled crayfish , 2018, Nature Ecology & Evolution.

[2]  J. Xiang,et al.  Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon , 2017, Marine Genomics.

[3]  B. Lunestad,et al.  Impact of teflubenzuron on the rockpool shrimp (Palaemon elegans). , 2017, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[4]  H. Fu,et al.  Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis , 2017, Scientific Reports.

[5]  W. Gu,et al.  Integrated analysis of mRNA‐seq in the haemocytes of Eriocheir sinensis in response to Spiroplasma eriocheiris infection , 2017, Fish & shellfish immunology.

[6]  G. Rotllant,et al.  Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus , 2017, BMC Genomics.

[7]  J. Schug,et al.  A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression , 2017, BMC Genomics.

[8]  Xianbo Jia,et al.  A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing , 2017, Scientific Reports.

[9]  Jian Li,et al.  Transcriptome analysis of the hepatopancreas in Exopalaemon carinicauda infected with an AHPND‐causing strain of Vibrio parahaemolyticus , 2017, Fish & shellfish immunology.

[10]  Jun Cao,et al.  Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge , 2017, Fish & shellfish immunology.

[11]  D. Hurwood,et al.  Identification of genes that potentially affect social dominance hierarchy in adult male giant freshwater prawns (Macrobrachium rosenbergii) , 2017 .

[12]  D. Hurwood,et al.  Understanding the Genomic Basis of Adaptive Response to Variable Osmotic Niches in Freshwater Prawns: A Comparative Intraspecific RNA-Seq Analysis of Macrobrachium australiense , 2017, The Journal of heredity.

[13]  Quek Xiu Cheng,et al.  Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data , 2017, Scientific Reports.

[14]  J. Xiang,et al.  Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei , 2017, Scientific Reports.

[15]  E. Tseng,et al.  Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human , 2017, BMC Genomics.

[16]  Ping Liu,et al.  Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus , 2017, PloS one.

[17]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[18]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[19]  D. Hurwood,et al.  Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species (M. koombooloomba) , 2017, PeerJ.

[20]  M. Ikhwanuddin,et al.  Transcriptome Analysis and Differential Gene Expression on the Testis of Orange Mud Crab, Scylla olivacea, during Sexual Maturation , 2017, PloS one.

[21]  Yuchao Zhao,et al.  RNA-Seq Analysis of the Antioxidant Status and Immune Response of Portunus trituberculatus Following Aerial Exposure , 2017, Marine Biotechnology.

[22]  Eun Ji Kim,et al.  Simulation-based comprehensive benchmarking of RNA-seq aligners , 2016, Nature Methods.

[23]  S. Weng,et al.  Transcriptome analysis of mud crab (Scylla paramamosain) gills in response to Mud crab reovirus (MCRV) , 2017, Fish & shellfish immunology.

[24]  Yuan Liu,et al.  Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages , 2017, Chinese Journal of Oceanology and Limnology.

[25]  D. Mykles,et al.  A Comparison of Resources for the Annotation of a De Novo Assembled Transcriptome in the Molting Gland (Y-Organ) of the Blackback Land Crab, Gecarcinus lateralis. , 2016, Integrative and comparative biology.

[26]  D. Durica,et al.  Analysis of Annotation and Differential Expression Methods used in RNA-seq Studies in Crustacean Systems. , 2016, Integrative and comparative biology.

[27]  Adrienne L. Gregg,et al.  De novo assembly and analysis of changes in the protein-coding transcriptome of the freshwater shrimp Paratya australiensis (Decapoda: Atyidae) in response to acid sulfate drainage water , 2016, BMC Genomics.

[28]  H. Nguyen,et al.  De novo assembly and transcriptome characterization of major growth-related genes in various tissues of Penaeus monodon , 2016 .

[29]  J. Kong,et al.  Transcriptome Analysis of the Hepatopancreas in the Pacific White Shrimp (Litopenaeus vannamei) under Acute Ammonia Stress , 2016, PloS one.

[30]  D. Hurwood,et al.  A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense) , 2016, PeerJ.

[31]  Blake L. Joyce,et al.  Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology , 2016, Integrative and comparative biology.

[32]  Justin C. Havird,et al.  Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics. , 2016, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[33]  Andrew L. Lemire,et al.  The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion , 2016, bioRxiv.

[34]  U. Deshpande,et al.  Comparative transcriptomic profiling of larvae and post-larvae of Macrobrachium rosenbergii in response to metamorphosis and salinity exposure , 2016, Genes & Genomics.

[35]  Justin C. Havird,et al.  Here We Are, But Where Do We Go? A Systematic Review of Crustacean Transcriptomic Studies from 2014-2015. , 2016, Integrative and comparative biology.

[36]  Justin C. Havird,et al.  Developmental Transcriptomics of the Hawaiian Anchialine Shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae). , 2016, Integrative and comparative biology.

[37]  R. Reinhardt,et al.  cDNA Library Enrichment of Full Length Transcripts for SMRT Long Read Sequencing , 2016, PloS one.

[38]  Z. Du,et al.  In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV , 2016, Scientific Reports.

[39]  R. Margis,et al.  Exploring developmental gene toolkit and associated pathways in a potential new model crustacean using transcriptomic analysis , 2016, Development Genes and Evolution.

[40]  T. Ventura,et al.  Applying the Power of Transcriptomics: Understanding Male Sexual Development in Decapod Crustacea. , 2016, Integrative and comparative biology.

[41]  N. H. Nguyen,et al.  Transcriptional Profiling of Banana Shrimp Fenneropenaeus merguiensis with Differing Levels of Viral Load. , 2016, Integrative and comparative biology.

[42]  K. F. Clark,et al.  Next-Generation Sequencing and the Crustacean Immune System: The Need for Alternatives in Immune Gene Annotation. , 2016, Integrative and comparative biology.

[43]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[44]  R. Lyons,et al.  Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction , 2016, International journal of molecular sciences.

[45]  Dmitri D. Pervouchine,et al.  A benchmark for RNA-seq quantification pipelines , 2016, Genome Biology.

[46]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[47]  G. Barton,et al.  How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? , 2015, RNA.

[48]  F. Wang,et al.  De novo assembly and transcriptome analysis of osmoregulation in Litopenaeus vannamei under three cultivated conditions with different salinities. , 2016, Gene.

[49]  Chao Bian,et al.  Draft genome of the Chinese mitten crab, Eriocheir sinensis , 2016, GigaScience.

[50]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[51]  Yang Liu,et al.  Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense , 2016, Scientific Reports.

[52]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[53]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[54]  A. Power,et al.  ‘Degraded’ RNA profiles in Arthropoda and beyond , 2015, PeerJ.

[55]  Bin Zhang,et al.  Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei) , 2015, BMC Genomics.

[56]  Jacopo Aguzzi,et al.  Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk , 2015, PloS one.

[57]  J. Hui,et al.  Neocaridina denticulata: A Decapod Crustacean Model for Functional Genomics. , 2015, Integrative and comparative biology.

[58]  T. F. Khang,et al.  Getting the most out of RNA-seq data analysis , 2015, PeerJ.

[59]  Hongkun Zheng,et al.  Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei , 2015, Scientific Reports.

[60]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[61]  Jie Quan,et al.  Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap , 2015, BMC Genomics.

[62]  T. Ventura,et al.  Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi , 2015, Scientific Reports.

[63]  Qibin Li,et al.  Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq , 2015, BMC Genomics.

[64]  Yuan Liu,et al.  Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis , 2015, PloS one.

[65]  Chang Xu,et al.  Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress , 2015, PloS one.

[66]  Xian-liang Meng,et al.  De novo Transcriptome Analysis of Portunus trituberculatus Ovary and Testis by RNA-Seq: Identification of Genes Involved in Gonadal Development , 2015, PloS one.

[67]  M. Snyder,et al.  High-throughput sequencing technologies. , 2015, Molecular cell.

[68]  S. Bhassu,et al.  RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection , 2015, Gut Pathogens.

[69]  Yuan Liu,et al.  Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. , 2015, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[70]  R. Macharia,et al.  Insects' RNA Profiling Reveals Absence of “Hidden Break” in 28S Ribosomal RNA Molecule of Onion Thrips, Thrips tabaci , 2015, Journal of nucleic acids.

[71]  Xiuzhen Huang,et al.  Bridger: a new framework for de novo transcriptome assembly using RNA-seq data , 2015, Genome Biology.

[72]  Q. Ren,et al.  Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress. , 2015, Fish & shellfish immunology.

[73]  A. Nabatov,et al.  The vesicle-associated function of NOD2 as a link between Crohn’s disease and mycobacterial infection , 2015, Gut Pathogens.

[74]  C. Quince,et al.  Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform , 2015, Nucleic acids research.

[75]  Hairong Wei,et al.  Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics. , 2014, Molecular plant.

[76]  Jeroen F. J. Laros,et al.  Determining the quality and complexity of next-generation sequencing data without a reference genome , 2014, Genome Biology.

[77]  Chien-Chi Lo,et al.  Rapid evaluation and quality control of next generation sequencing data with FaQCs , 2014, BMC Bioinformatics.

[78]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[79]  Jihye Kim,et al.  Long Term Storage of Dry versus Frozen RNA for Next Generation Molecular Studies , 2014, PloS one.

[80]  Q. Ren,et al.  Digital gene expression analysis in the gills of the swimming crab (Portunus trituberculatus) exposed to elevated ambient ammonia-N , 2014 .

[81]  R. Harrison,et al.  A Comparison of Next Generation Sequencing Technologies for Transcriptome Assembly and Utility for RNA-Seq in a Non-Model Bird , 2014, PloS one.

[82]  Yang Yu,et al.  Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei , 2014, PloS one.

[83]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[84]  H. Lehrach,et al.  Influence of RNA extraction methods and library selection schemes on RNA-seq data , 2014, BMC Genomics.

[85]  A. Pavasovic,et al.  Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of De novo assemblers , 2014, BMC Research Notes.

[86]  Yongsheng Bai,et al.  Evaluation of de novo transcriptome assemblies from RNA-Seq data , 2014, Genome Biology.

[87]  Denis C. Bauer,et al.  A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data , 2014, bioRxiv.

[88]  Ping Liu,et al.  Transcriptome Analysis of the Portunus trituberculatus: De Novo Assembly, Growth-Related Gene Identification and Marker Discovery , 2014, PloS one.

[89]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[90]  Ke Chen,et al.  Transcriptome sequencing revealed the genes and pathways involved in salinity stress of Chinese mitten crab, Eriocheir sinensis. , 2014, Physiological genomics.

[91]  J. Hui,et al.  Genomic Sequence and Experimental Tractability of a New Decapod Shrimp Model, Neocaridina denticulata , 2014, Marine drugs.

[92]  Jie Zhou,et al.  RNA-seq differential expression studies: more sequence or more replication? , 2014, Bioinform..

[93]  Matthew D. MacManes,et al.  On the optimal trimming of high-throughput mRNA sequence data , 2014, Front. Genet..

[94]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[95]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[96]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[97]  Jie Gao,et al.  Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain) , 2014, BMC Genomics.

[98]  M. Morgante,et al.  An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis , 2013, PloS one.

[99]  Yuan Liu,et al.  Transcriptome Profiling Analysis on Whole Bodies of Microbial Challenged Eriocheir sinensis Larvae for Immune Gene Identification and SNP Development , 2013, PloS one.

[100]  Ping Liu,et al.  Transcriptome Analysis of Portunus trituberculatus in Response to Salinity Stress Provides Insights into the Molecular Basis of Osmoregulation , 2013, PloS one.

[101]  Zhanjiang Liu,et al.  RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. , 2013, Developmental and comparative immunology.

[102]  T. Ventura,et al.  Gene Silencing in Crustaceans: From Basic Research to Biotechnologies , 2013, Genes.

[103]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[104]  H. Fu,et al.  Transcriptome Analysis of Androgenic Gland for Discovery of Novel Genes from the Oriental River Prawn, Macrobrachium nipponense, Using Illumina Hiseq 2000 , 2013, PloS one.

[105]  R. Wilson,et al.  The Next-Generation Sequencing Revolution and Its Impact on Genomics , 2013, Cell.

[106]  May D. Wang,et al.  Systematic Assessment of RNA-Seq Quantification Tools Using Simulated Sequence Data , 2013, BCB.

[107]  Saurabh Chaudhary,et al.  Optimization of De Novo Short Read Assembly of Seabuckthorn (Hippophae rhamnoides L.) Transcriptome , 2013, PloS one.

[108]  P. Lopez,et al.  Sequence comparative analysis using networks: software for evaluating de novo transcript assembly from next-generation sequencing. , 2013, Molecular biology and evolution.

[109]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[110]  Michael Ott,et al.  De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity , 2013 .

[111]  Ümit V. Çatalyürek,et al.  Benchmarking short sequence mapping tools , 2013, BMC Bioinformatics.

[112]  Nathan Christopher Shaner,et al.  A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly , 2013, BMC Genomics.

[113]  Gabor T. Marth,et al.  Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression , 2013, Bioinform..

[114]  V. Chalifa-Caspi,et al.  Post-Embryonic Transcriptomes of the Prawn Macrobrachium rosenbergii: Multigenic Succession through Metamorphosis , 2013, PloS one.

[115]  L. Pachter,et al.  Streaming fragment assignment for real-time analysis of sequencing experiments , 2012, Nature Methods.

[116]  Charlotte Soneson,et al.  A comparison of methods for differential expression analysis of RNA-seq data , 2013, BMC Bioinformatics.

[117]  Jun Wu,et al.  HTQC: a fast quality control toolkit for Illumina sequencing data , 2013, BMC Bioinformatics.

[118]  Nuno A. Fonseca,et al.  Tools for mapping high-throughput sequencing data , 2012, Bioinform..

[119]  Qian Wang,et al.  GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data , 2012, Bioinform..

[120]  Susan R. Wilson,et al.  Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing , 2012, BMC Genomics.

[121]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[122]  H. Lehrach,et al.  A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. , 2012, Biochemical and biophysical research communications.

[123]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[124]  Joaquín Dopazo,et al.  NOIseq: a RNA-seq differential expression method robust for sequencing depth biases , 2012 .

[125]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[126]  Mukesh Jain,et al.  NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data , 2012, PloS one.

[127]  Vanessa M Kvam,et al.  A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. , 2012, American journal of botany.

[128]  Euan A Ashley,et al.  Performance comparison of whole-genome sequencing platforms , 2011, Nature Biotechnology.

[129]  Nan Li,et al.  Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. , 2012, Briefings in functional genomics.

[130]  Xuan Li,et al.  Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study , 2011, BMC Bioinformatics.

[131]  R. Lyons,et al.  Transcriptomics of a Giant Freshwater Prawn (Macrobrachium rosenbergii): De Novo Assembly, Annotation and Marker Discovery , 2011, PloS one.

[132]  A. Conesa,et al.  Differential expression in RNA-seq: a matter of depth. , 2011, Genome research.

[133]  Ying Wang,et al.  Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens , 2011, BMC Bioinformatics.

[134]  Fred A. Wright,et al.  A powerful and flexible approach to the analysis of RNA sequence count data , 2011, Bioinform..

[135]  T. Glenn Field guide to next‐generation DNA sequencers , 2011, Molecular ecology resources.

[136]  Brian P. Brunk,et al.  Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) , 2011, Bioinform..

[137]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[138]  S. Zhong,et al.  High-throughput illumina strand-specific RNA sequencing library preparation. , 2011, Cold Spring Harbor protocols.

[139]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[140]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[141]  Matthew B. Kerby,et al.  Landscape of next-generation sequencing technologies. , 2011, Analytical chemistry.

[142]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[143]  Xiangqin Cui,et al.  Design and validation issues in RNA-seq experiments , 2011, Briefings Bioinform..

[144]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[145]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[146]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[147]  Christophe Dessimoz,et al.  Base-calling for next-generation sequencing platforms , 2011, Briefings Bioinform..

[148]  B. Langmead,et al.  Aligning Short Sequencing Reads with Bowtie , 2010, Current protocols in bioinformatics.

[149]  David R. Kelley,et al.  Quake: quality-aware detection and correction of sequencing errors , 2010, Genome Biology.

[150]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[151]  A. Kasarskis,et al.  A window into third-generation sequencing. , 2010, Human molecular genetics.

[152]  J. Montoya-Burgos,et al.  Optimization of de novo transcriptome assembly from next-generation sequencing data. , 2010, Genome research.

[153]  Eva C. Winnebeck,et al.  Why Does Insect RNA Look Degraded? , 2010, Journal of insect science.

[154]  Heng Li,et al.  A survey of sequence alignment algorithms for next-generation sequencing , 2010, Briefings Bioinform..

[155]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[156]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[157]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[158]  R. Doerge,et al.  Statistical Design and Analysis of RNA Sequencing Data , 2010, Genetics.

[159]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[160]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[161]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[162]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[163]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[164]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[165]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[166]  B. Wilhelm,et al.  RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. , 2009, Methods.

[167]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[168]  R. Lister,et al.  Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. , 2009, Current opinion in plant biology.

[169]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[170]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[171]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[172]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[173]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[174]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[175]  Daniel G. Brown,et al.  A survey of sequence alignment , 2006 .

[176]  Paul Pavlidis,et al.  ErmineJ: Tool for functional analysis of gene expression data sets , 2005, BMC Bioinformatics.

[177]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[178]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[179]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[180]  홀덴 데이비드윌리암,et al.  Identification of genes , 1995 .