Learning Methods for Automatic Classification of Biomedical Volume Datasets

This paper analyzes how to introduce machine learning algorithms into the process of direct volume rendering. A conceptual framework for the optical property function elicitation process is proposed and particularized for the use of attribute-value classifiers. The process is evaluated in terms of accuracy and speed using four different off-theshelf classifiers (J48, Nave Bayes, Simple Logistic and ECOC-Adaboost). The empirical results confirm the classification of biomedical datasets as a tough problem where an opportunity for further research emerges.

[1]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[2]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[3]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[4]  Anna Puig,et al.  A fast hierarchical traversal strategy for multimodal visualization , 2004, IS&T/SPIE Electronic Imaging.

[5]  Eibe Frank,et al.  Logistic Model Trees , 2003, ECML.

[6]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[7]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[8]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[9]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[10]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[11]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[12]  Christiaan P. Gribble,et al.  Cluster-Based Interactive Volume Rendering with Simian , 2003 .

[13]  Guido Gerig,et al.  Unsupervised tissue type segmentation of 3D dual-echo MR head data , 1992, Image Vis. Comput..

[14]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.

[15]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[16]  Kwan-Liu Ma,et al.  A novel interface for higher-dimensional classification of volume data , 2003, IEEE Visualization, 2003. VIS 2003..

[17]  T. J. Jankun-Kelly,et al.  A Study of Transfer Function Generation for Time-Varying Volume Data , 2001, VG.

[18]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[19]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[20]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[21]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[22]  Lukas Mroz,et al.  RTVR-a flexible Java library for interactive volume rendering , 2001, Proceedings Visualization, 2001. VIS '01..

[23]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[24]  Arie E. Kaufman Volume visualization , 1996, CSUR.

[25]  Markus Hadwiger,et al.  High-quality two-level volume rendering of segmented data sets on consumer graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[26]  David H. Laidlaw,et al.  Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms , 1997, IEEE Transactions on Medical Imaging.

[27]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).