A Lagrange Multiplier Expression Method for Bilevel Polynomial Optimization

This paper studies bilevel polynomial optimization problems. To solve them, we give a method based on polynomial optimization relaxations. Each relaxation is obtained from the Kurash-Kuhn-Tucker (KKT) conditions for the lower level optimization and the exchange technique for semi-infinite programming. For KKT conditions, Lagrange multipliers are represented as polynomial or rational functions. The Moment-SOS relaxations are used to solve the polynomial optimizattion relaxations. Under some general assumptions, we prove the convergence of the algorithm for solving bilevel polynomial optimization problems. Numerical experiments are presented to show the efficiency of the method.

[1]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[2]  Boglárka G.-Tóth,et al.  Solving a Huff-like Stackelberg location problem on networks , 2016, J. Glob. Optim..

[3]  Jing Hu,et al.  Classification model selection via bilevel programming , 2008, Optim. Methods Softw..

[4]  Le Dung Muu,et al.  A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems , 2003, J. Glob. Optim..

[5]  Vaithilingam Jeyakumar,et al.  A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs , 2019, Journal of Global Optimization.

[6]  Jirí Vladimír Outrata,et al.  On the numerical solution of a class of Stackelberg problems , 1990, ZOR Methods Model. Oper. Res..

[7]  Jane J. Ye,et al.  Directional Necessary Optimality Conditions for Bilevel Programs , 2020, Math. Oper. Res..

[8]  Jane J. Ye,et al.  Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs , 2020, J. Glob. Optim..

[9]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[10]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[11]  E. Aiyoshi,et al.  A new computational method for Stackelberg and min-max problems by use of a penalty method , 1981 .

[12]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[13]  Kurt Jörnsten,et al.  The Deregulated Electricity Market Viewed as a Bilevel Programming Problem , 2005, J. Glob. Optim..

[14]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[15]  Li Wang,et al.  Bilevel Polynomial Programs and Semidefinite Relaxation Methods , 2015, SIAM J. Optim..

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[18]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[19]  Jane J. Ye,et al.  A smoothing augmented Lagrangian method for solving simple bilevel programs , 2014, Comput. Optim. Appl..

[20]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[21]  Jane J. Ye,et al.  Smoothing SQP Methods for Solving Degenerate Nonsmooth Constrained Optimization Problems with Applications to Bilevel Programs , 2014, SIAM J. Optim..

[22]  Xiaoming Yuan,et al.  A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton , 2020, ICML.

[23]  J. Gauvin,et al.  Differential properties of the marginal function in mathematical programming , 1982 .

[24]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[25]  Vaithilingam Jeyakumar,et al.  Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems , 2015, SIAM J. Optim..

[26]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[27]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[28]  Monique Laurent,et al.  Optimization over polynomials: Selected topics , 2014 .

[29]  Jiawang Nie,et al.  Certifying convergence of Lasserre’s hierarchy via flat truncation , 2011, Math. Program..

[30]  Jiawang Nie,et al.  Tight relaxations for polynomial optimization and Lagrange multiplier expressions , 2017, Mathematical Programming.

[31]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[32]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[33]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[34]  Georg Still,et al.  Solving bilevel programs with the KKT-approach , 2012, Mathematical Programming.

[35]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[36]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..

[37]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[38]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[39]  Jane J. Ye,et al.  Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems , 2015, J. Glob. Optim..

[40]  Lorenzo Lampariello,et al.  A Bridge Between Bilevel Programs and Nash Games , 2015, J. Optim. Theory Appl..

[41]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[42]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[43]  Gui-Hua Lin,et al.  On solving simple bilevel programs with a nonconvex lower level program , 2014, Math. Program..

[44]  Lei Guo,et al.  Sensitivity Analysis of the Value Function for Parametric Mathematical Programs with Equilibrium Constraints , 2014, SIAM J. Optim..

[45]  Stephan Dempe,et al.  Solution algorithm for an optimistic linear Stackelberg problem , 2014, Comput. Oper. Res..