On linear-quadratic optimal control of implicit difference equations

In this work we investigate explicit and implicit difference equations and the corresponding infinite time horizon linear-quadratic optimal control problem. We derive conditions for feasibility of the optimal control problem as well as existence and uniqueness of optimal controls under certain weaker assumptions compared to the standard approaches in the literature which are using algebraic Riccati equations. To this end, we introduce and analyze a discrete-time Lur'e equation and a corresponding Kalman-Yakubovich-Popov inequality. We show that solvability of the Kalman-Yakubovich-Popov inequality can be characterized via the spectral structure of a certain palindromic matrix pencil. The deflating subspaces of this pencil are finally used to construct solutions of the Lur'e equation. The results of this work are transferred from the continuous-time case. However, many additional technical difficulties arise in this context.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  Daniel Bankmann On linear-quadratic control theory of implicit difference equations , 2016 .

[3]  Keith Glover,et al.  Spectral factorization via Hermitian pencils , 1989 .

[4]  Matthias Voigt,et al.  On Linear-Quadratic Optimal Control and Robustness of Differential-Algebraic Systems , 2015 .

[5]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[6]  Doktor der Naturwissenschaften Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .

[7]  T. Berger On differential-algebraic control systems , 2013 .

[8]  R. Byers,et al.  Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems , 2008 .

[9]  A. Laub,et al.  On the numerical solution of the discrete-time algebraic Riccati equation , 1980 .

[10]  Matthias Voigt,et al.  The Kalman–Yakubovich–Popov inequality for differential-algebraic systems , 2015 .

[11]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[12]  R. Byers,et al.  Descriptor Systems Without Controllability at Infinity , 1997 .

[13]  Galina A. Kurina,et al.  On linear-quadratic optimal control problems for time-varying descriptor systems , 2004, CDC.

[14]  D. Luenberger,et al.  SINGULAR DYNAMIC LEONTIEF SYSTEMS1 , 1977 .

[15]  A. Saberi,et al.  The discrete algebraic Riccati equation and linear matrix inequality , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[16]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[17]  Timo Reis,et al.  Lur’e equations and even matrix pencils , 2011 .

[18]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[19]  Volker Mehrmann,et al.  Self-adjoint differential-algebraic equations , 2014, Math. Control. Signals Syst..

[20]  D. N. Shields,et al.  Partial Singular-Value Assignment in the Design of Robust Observers for Discrete-Time Descriptor Systems , 1988 .

[21]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[22]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[23]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[24]  Leonid Mirkin,et al.  Discrete-time lifting via implicit descriptor systems , 1999, 1999 European Control Conference (ECC).

[25]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[26]  T. Stykel Input-Output Invariants for Descriptor Systems , 2003 .

[27]  A. Bunse-Gerstner,et al.  Feedback design for regularizing descriptor systems , 1999 .

[28]  Alan J. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[29]  Brian D. O. Anderson,et al.  Spectral factorization with imaginary-axis zeros☆ , 1997 .

[30]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[31]  Timo Reis,et al.  Outer transfer functions of differential-algebraic systems , 2017 .

[32]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .

[33]  Volker Mehrmann,et al.  Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index , 2008, Math. Control. Signals Syst..

[34]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[35]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[36]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[37]  Vlad Ionescu,et al.  On computing the stabilizing solution of the discrete-time Riccati equation , 1992 .

[38]  P. Dooren Reducing subspaces: Definitions, properties and algorithms , 1983 .

[39]  Volker Mehrmann,et al.  Self-conjugate differential and difference operators arising in the optimal control of descriptor systems , 2014 .

[40]  Roger A. Horn,et al.  Canonical forms for complex matrix congruence and ∗congruence , 2006, 0709.2473.