Theoretical and quantitative evaluation of hybrid PML-ABCs for seismic wave simulation

[1]  Jingyi Chen,et al.  Frequency-domain elastic wavefield simulation with hybrid absorbing boundary conditions , 2019, Journal of Geophysics and Engineering.

[2]  Bijan Zakeri,et al.  An optimized hybrid Convolutional Perfectly Matched Layer for efficient absorption of electromagnetic waves , 2018, J. Comput. Phys..

[3]  Jinhai Zhang,et al.  Comparison of artificial absorbing boundaries for acoustic wave equation modelling , 2017 .

[4]  J. Zhang,et al.  Importance of double-pole CFS-PML for broad-band seismic wave simulation and optimal parameters selection , 2017 .

[5]  Xiao‐Bi Xie,et al.  Broadband seismic illumination and resolution analyses based on staining algorithm , 2016, Applied Geophysics.

[6]  Marco Antonio Cetale Santos,et al.  Frequency-domain acoustic-wave modeling with hybrid absorbing boundary conditions , 2014 .

[7]  Wei Zhang,et al.  Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids , 2014 .

[8]  X. Jia,et al.  Staining algorithm for seismic modeling and migration , 2014 .

[9]  Jianguo Zhao,et al.  An unsplit complex-frequency-shifted PML based on matched Z-transform for FDTD modelling of seismic wave equations , 2012 .

[10]  Wei Zhang,et al.  Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling , 2010 .

[11]  Axel Modave,et al.  On the parameters of absorbing layers for shallow water models , 2010 .

[12]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[13]  Dan Givoli,et al.  High-order local absorbing conditions for the wave equation: Extensions and improvements , 2008, J. Comput. Phys..

[14]  Jean-Pierre Bérenger,et al.  On the Huygens absorbing boundary conditions for electromagnetics , 2007, J. Comput. Phys..

[15]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[16]  E. A. Skelton,et al.  Guided elastic waves and perfectly matched layers , 2007 .

[17]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[18]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[19]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[20]  Chang-Hong Liang,et al.  A new implementation of CFS‐PML for ADI‐FDTD method , 2006 .

[21]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[22]  M. Guddati,et al.  Highly accurate absorbing boundary conditions for wide-angle wave equations , 2006 .

[23]  Jian-Ming Jin,et al.  On the development of a higher-order PML , 2005, IEEE Transactions on Antennas and Propagation.

[24]  É. Delavaud,et al.  Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations , 2005 .

[25]  Murthy N. Guddati,et al.  Migration with arbitrarily wide-angle wave equations , 2005 .

[26]  R. Diaz,et al.  A new multistack radiation boundary condition for FDTD based on self-teleportation of fields , 2005 .

[27]  R. Diaz,et al.  A simple stackable re-radiating boundary condition (rRBC) for FDTD , 2004 .

[28]  Qing Huo Liu,et al.  A Multidomain PSTD Method for 3D Elastic Wave Equations , 2004 .

[29]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[30]  I Wayan Sudiarta An absorbing boundary condition for FDTD truncation using multiple absorbing surfaces , 2003 .

[31]  Yilong Lu,et al.  Combination of PML and ABC for scattering problem , 2001 .

[32]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[33]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[34]  Peter G. Petropoulos,et al.  On the Termination of the Perfectly Matched Layer with Local Absorbing Boundary Conditions , 1998 .

[35]  N. Kantartzis,et al.  A comparative study of the Berenger perfectly matched layer, the superabsorption technique and several higher-order ABC's for the FDTD algorithm in two and three dimensional problems , 1997 .

[36]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[37]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[38]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[39]  Jian-Ming Jin,et al.  Combining PML and ABC for the finite-element analysis of scattering problems , 1996 .

[40]  R. Mittra,et al.  Mesh truncation in the finite‐element frequency‐domain method with a perfectly matched layer (PML) applied in conjunction with analytic and numerical absorbing boundary conditions , 1995 .

[41]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[42]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[43]  R. Higdon Radiation boundary conditions for dispersive waves , 1994 .

[44]  Robert L. Higdon,et al.  Absorbing boundary conditions for acoustic and elastic waves in stratified media , 1992 .

[45]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[46]  C. Randall,et al.  Absorbing boundary condition for the elastic wave equation , 1988 .

[47]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[48]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[49]  Zhenpeng Liao,et al.  A TRANSMITTING BOUNDARY FOR TRANSIENT WAVE ANALYSES , 1984 .

[50]  Qihua Li,et al.  Generalized staining algorithm for seismic modeling and migration , 2017 .

[51]  Gunilla Kreiss,et al.  An optimized perfectly matched layer for the Schrödinger equation , 2011 .

[52]  Loukas F. Kallivokas,et al.  Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media , 2011 .

[53]  Roland Martin,et al.  A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML) , 2010 .

[54]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[55]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.