Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping

The hexaploid sweetpotato (Ipomoea batatas (L.) Lam., 2n = 6x = 90) is an important staple food crop worldwide and plays a vital role in alleviating famine in developing countries. Due to its high ploidy level, genetic studies in sweetpotato lag behind major diploid crops significantly. We built an ultra-dense multilocus integrated genetic map and characterized the inheritance system in a sweetpotato full-sib family using our newly developed software, MAPpoly. The resulting genetic map revealed 96.5% collinearity between I. batatas and its diploid relative I. trifida. We computed the genotypic probabilities across the whole genome for all individuals in the mapping population and inferred their complete hexaploid haplotypes. We provide evidence that most of the meiotic configurations (73.3%) were resolved in bivalents, although a small portion of multivalent signatures (15.7%), among other inconclusive configurations (11.0%), were also observed. Except for low levels of preferential pairing in linkage group 2, we observed a hexasomic inheritance mechanism in all linkage groups. We propose that the hexasomic-bivalent inheritance promotes stability to the allelic transmission in sweetpotato.

[1]  G. C. Yencho,et al.  Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] , 2019, Theoretical and Applied Genetics.

[2]  G. C. Yencho,et al.  Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population , 2019, Genetics.

[3]  G. C. Yencho,et al.  Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement , 2018, Nature Communications.

[4]  A. A. Garcia,et al.  Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models , 2018, G3: Genes, Genomes, Genetics.

[5]  G. C. Yencho,et al.  Genetic Diversity and Population Structure of the USDA Sweetpotato (Ipomoea batatas) Germplasm Collections Using GBSpoly , 2018, Front. Plant Sci..

[6]  R. Visser,et al.  Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose , 2018, Theoretical and Applied Genetics.

[7]  R. Visser,et al.  Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose , 2018, Theoretical and Applied Genetics.

[8]  M. Rausher,et al.  Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia , 2018, Current Biology.

[9]  Anil Kumar,et al.  RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1) in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation , 2018, Front. Plant Sci..

[10]  D. Hasselquist,et al.  No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird , 2018, Nature Communications.

[11]  K. Dodds,et al.  Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations , 2018, Genetics.

[12]  R. Visser,et al.  An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis , 2017, Theoretical and Applied Genetics.

[13]  Martin Vingron,et al.  Haplotype-resolved sweet potato genome traces back its hexaploidization history , 2017, Nature Plants.

[14]  S. Isobe,et al.  A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas) , 2017, Scientific Reports.

[15]  S. Banga,et al.  Segregation for fertility and meiotic stability in novel Brassica allohexaploids , 2017, Theoretical and Applied Genetics.

[16]  M. Tahara,et al.  Genetic linkage analysis using DNA markers in sweetpotato , 2017, Breeding science.

[17]  C. Hackett,et al.  A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling , 2016, Theoretical and Applied Genetics.

[18]  T. Lenormand,et al.  Evolutionary mysteries in meiosis , 2016, bioRxiv.

[19]  C. Hackett,et al.  Probabilistic Multilocus Haplotype Reconstruction in Outcrossing Tetraploids , 2016, Genetics.

[20]  T. Shors,et al.  A trip down memory lane about sex differences in the brain , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Yuki Monden,et al.  Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing , 2015, Breeding science.

[22]  Jesse D. Hollister Polyploidy: adaptation to the genomic environment. , 2015, The New phytologist.

[23]  K. Alix,et al.  Polyploidy and genome evolution , 2014 .

[24]  D. McKey,et al.  Correction: Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.) , 2013, PLoS ONE.

[25]  H. Zhai,et al.  A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato , 2013, Molecular Breeding.

[26]  Genoveva Rossel,et al.  Disentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.) , 2013, PloS one.

[27]  C. Hackett,et al.  Linkage Analysis and QTL Mapping Using SNP Dosage Data in a Tetraploid Potato Mapping Population , 2013, PloS one.

[28]  Roeland E. Voorrips,et al.  The simulation of meiosis in diploid and tetraploid organisms using various genetic models , 2012, BMC Bioinformatics.

[29]  Oliver Serang,et al.  Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids , 2012, PloS one.

[30]  L. Shuzhen,et al.  Establishment of molecular linkage maps using SRAP markers in sweet potato. , 2010 .

[31]  Lindsey J. Leach,et al.  Multilocus tetrasomic linkage analysis using hidden Markov chain model , 2010, Proceedings of the National Academy of Sciences.

[32]  Jo L. Dicks,et al.  Computational approaches and software tools for genetic linkage map estimation in plants , 2009, Briefings Bioinform..

[33]  A. Gustafsson,et al.  MUTATIONS AND CROP IMPROVEMENT. III. IPOMOEA BATATAS (L.) POIR. (CONVOLVULACEAE) , 2009 .

[34]  M. Stift,et al.  Segregation Models for Disomic, Tetrasomic and Intermediate Inheritance in Tetraploids: A General Procedure Applied to Rorippa (Yellow Cress) Microsatellite Data , 2008, Genetics.

[35]  J. C. Cervantes-Flores,et al.  Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers , 2008, Molecular Breeding.

[36]  P. Jackson,et al.  Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. , 2007, Genome.

[37]  Riccardo Velasco,et al.  Genetic Mapping in the Presence of Genotyping Errors , 2007, Genetics.

[38]  Luca Comai,et al.  The advantages and disadvantages of being polyploid , 2005, Nature Reviews Genetics.

[39]  Z. Luo,et al.  Theoretical basis for genetic linkage analysis in autotetraploid species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Gallais Quantitative genetics and breeding methods in autopolyploid plants , 2004 .

[41]  E. Sanchez-Moran,et al.  Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. , 2003, Genetics.

[42]  A. Kriegner,et al.  A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers , 2003, Molecular Breeding.

[43]  C. Hackett,et al.  Constructing linkage maps in autotetraploid species using simulated annealing , 2003, Theoretical and Applied Genetics.

[44]  D. Schemske,et al.  NEOPOLYPLOIDY IN FLOWERING PLANTS , 2002 .

[45]  C. Hackett,et al.  Construction of a genetic linkage map in tetraploid species using molecular markers. , 2001, Genetics.

[46]  R. Doerge,et al.  Model selection for quantitative trait locus analysis in polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Boiteux,et al.  Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  G A Churchill,et al.  Statistical aspects of genetic mapping in autopolyploids. , 1999, Gene.

[49]  C. Hackett,et al.  Linkage analysis in tetraploid species: a simulation study , 1998 .

[50]  Kittipat Ukoskit,et al.  Autopolyploidy versus Allopolyploidy and Low-density Randomly Amplified Polymorphic DNA Linkage Maps of Sweetpotato , 1997 .

[51]  R. Nicklas,et al.  Orientation and segregation of a micromanipulated multivalent: Familiar principles, divergent outcomes , 1992, Chromosoma.

[52]  I. Shiotani,et al.  Genomic Structure of the Sweet Potato and Hexaploids in Ipomoea trifida (H.B.K.) DON. , 1989 .

[53]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[54]  I. Shiotani,et al.  Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato , 1987 .

[55]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. C. Jackson,et al.  Cytogenetic analyses of autopolyploids : Models and methods for triploids to octoploids , 1982 .

[57]  K. Mather Segregation and linkage in autotetraploids , 1936, Journal of Genetics.

[58]  O. Serang,et al.  Quantitative SNP genotyping of polyploids with MassARRAY and other platforms. , 2015, Methods in molecular biology.

[59]  O. Scheid,et al.  Meiosis in Polyploid Plants , 2012 .

[60]  V. Njiti,et al.  Wx intron variations support an allohexaploid origin of the sweetpotato [Ipomoea batatas (L.) Lam] , 2010, Euphytica.

[61]  G. Loebenstein Origin, Distribution and Economic Importance , 2009 .

[62]  M. L. Magoon,et al.  Cytological evidence on the origin of sweet potato , 2004, Theoretical and Applied Genetics.

[63]  Z. Zeng,et al.  Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines , 2004, Genetica.

[64]  S. Tanksley,et al.  The detection and estimation of linkage in polyploids using single-dose restriction fragments , 2004, Theoretical and Applied Genetics.

[65]  C. Hackett,et al.  Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps , 2003, Heredity.

[66]  K. Evans,et al.  Distribution and economic importance , 1998 .

[67]  塩谷 格,et al.  Synthetic hexaploids derived from wild species related to sweet potato. , 1987 .

[68]  Dr. J. Sybenga Meiotic Configurations , 1975, Monographs on Theoretical and Applied Genetics.

[69]  C. R. Burnham Discussions in cytogenetics. , 1962 .

[70]  R. Fisher THE THEORETICAL CONSEQUENCES OF POLYPLOID INHERITANCE FOR THE MID STYLE FORM OF LYTHRUM SALICARIA , 1941 .