The role of fuzzy sets in decision sciences: Old techniques and new directions

We try to provide a tentative assessment of the role of fuzzy sets in decision analysis. We discuss membership functions, aggregation operations, linguistic variables, fuzzy intervals and the valued preference relations they induce. The importance of the notion of bipolarity and the potential of qualitative evaluation methods are also pointed out. We take a critical standpoint on the state-of-the-art, in order to highlight the actual achievements and question what is often considered debatable by decision scientists observing the fuzzy decision analysis literature.

[1]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[2]  Philippe Fortemps,et al.  Conjoint axiomatization of Min, DiscriMin and LexiMin , 2004, Fuzzy Sets Syst..

[3]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[4]  Jaroslav Ramík,et al.  Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean , 2010, Fuzzy Sets Syst..

[5]  Francisco Herrera,et al.  Fuzzy Sets and Their Extensions: Representation, Aggregation and Models , 2008 .

[6]  Ying-Ming Wang,et al.  On the normalization of interval and fuzzy weights , 2006, Fuzzy Sets Syst..

[7]  Didier Dubois,et al.  Fuzzy arithmetic in qualitative reasoning , 1989 .

[8]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[9]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[10]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[11]  Bernard De Baets,et al.  A compendium of fuzzy weak orders: Representations and constructions , 2007, Fuzzy Sets Syst..

[12]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[13]  Shan-Huo Chen Ranking fuzzy numbers with maximizing set and minimizing set , 1985 .

[14]  Francisco Herrera,et al.  A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..

[16]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..

[17]  Philippe Smets,et al.  Belief functions on real numbers , 2005, Int. J. Approx. Reason..

[18]  A. Tversky,et al.  Foundations of Measurement, Vol. I: Additive and Polynomial Representations , 1991 .

[19]  C. Carlsson,et al.  On additions of interactive fuzzy numbers , 2005 .

[20]  F. Lootsma Fuzzy Logic for Planning and Decision Making , 1997 .

[21]  Didier Dubois,et al.  Qualitative Heuristics For Balancing the Pros and Cons , 2008 .

[22]  Didier Dubois,et al.  An introduction to bipolar representations of information and preference , 2008, Int. J. Intell. Syst..

[23]  L. M. D. C. Ibáñez,et al.  A subjective approach for ranking fuzzy numbers , 1989 .

[24]  Didier Dubois,et al.  On the Qualitative Comparison of Decisions Having Positive and Negative Features , 2008, J. Artif. Intell. Res..

[25]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[26]  Didier Dubois,et al.  Computing improved optimal solutions to max-min flexible constraint satisfaction problems , 1999, Eur. J. Oper. Res..

[27]  Irina Georgescu Fuzzy Choice Functions - A Revealed Preference Approach , 2007, Studies in Fuzziness and Soft Computing.

[28]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[29]  Bernard De Baets,et al.  General results on the decomposition of transitive fuzzy relations , 2010, Fuzzy Optim. Decis. Mak..

[30]  Fred C. Lunenburg,et al.  The decision-making process. , 1987, Journal of the American Geriatrics Society.

[31]  Henri Prade,et al.  A Fuzzy Constraint-Based Approach to the Analytic Hierarchy Process , 2008 .

[32]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[33]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[34]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[35]  Radko Mesiar,et al.  Refining Aggregation Operator-Based Orderings in Multifactorial Evaluation—Part I: Continuous Scales , 2007, IEEE Transactions on Fuzzy Systems.

[36]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[37]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[38]  Patrick Meyer,et al.  On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support , 2006, Fuzzy Sets Syst..

[39]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[40]  Philippe Smets,et al.  Quantified Representation of Uncertainty and Imprecision , 1998 .

[41]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[42]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[43]  Didier Dubois,et al.  An Extension of Stochastic Dominance to Fuzzy Random Variables , 2010, IPMU.

[44]  Bernard De Baets,et al.  Additive decomposition of fuzzy pre-orders , 2007, Fuzzy Sets Syst..

[45]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[46]  W. Pedrycz,et al.  A fuzzy extension of Saaty's priority theory , 1983 .

[47]  Didier Dubois,et al.  Capacity Refinements and Their Application to Qualitative Decision Evaluation , 2009, ECSQARU.

[48]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[49]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[50]  Didier Dubois,et al.  Making Discrete Sugeno Integrals More Discriminant , 2009, Int. J. Approx. Reason..

[51]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[52]  D. Dubois,et al.  An introduction to bipolar representations of information and preference , 2008 .

[53]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[54]  Michel Grabisch,et al.  Bipolar and bivariate models in multicriteria decision analysis: Descriptive and constructive approaches , 2008, Int. J. Intell. Syst..

[55]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[56]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[57]  Thierry Denoeux,et al.  Extending stochastic ordering to belief functions on the real line , 2009, Inf. Sci..

[58]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[59]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[60]  B. De Baets,et al.  Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity , 2005, Fuzzy Sets Syst..

[61]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[62]  Bernard De Baets,et al.  Fuzzy Preference Modelling: Fundamentals and Recent Advances , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[63]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[64]  Bernadette Bouchon-Meunier,et al.  Uncertainty and Intelligent Information Systems , 2008 .

[65]  Janos Fodor Some remarks on difference measurement , 2009, 2009 7th International Symposium on Applied Machine Intelligence and Informatics.

[66]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[67]  Laurie Hendren,et al.  The abc Group , 2004 .

[68]  José L. Verdegay,et al.  Fuzzy Optimization: Recent Advances , 1994 .

[69]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[70]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[71]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[72]  James J. Buckley,et al.  Fuzzy hierarchical analysis: the Lambda-Max method , 2001, Fuzzy Sets Syst..

[73]  Michel Grabisch,et al.  The Möbius transform on symmetric ordered structures and its application to capacities on finite sets , 2004, Discret. Math..

[74]  José L. Verdegay,et al.  Ranking fuzzy interval numbers in the setting of random sets , 1993, Inf. Sci..

[75]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[76]  P. Vincke,et al.  Fuzzy Possibility Graphs and Their Application to Ranking Fuzzy Numbers , 1988 .

[77]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[78]  Hélène Fargier,et al.  Qualitative Decision under Uncertainty: Back to Expected Utility , 2003, IJCAI.

[79]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[80]  Andrew Whinston,et al.  Fuzzy Sets and Social Choice , 1973 .

[81]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[82]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[83]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[84]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[85]  Pawel Zielinski,et al.  Ranking Fuzzy Interval Numbers in the Setting of Random Sets - Further Results , 1999, Inf. Sci..

[86]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[87]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .

[88]  L. Zadeh Calculus of fuzzy restrictions , 1996 .

[89]  Bernard De Baets,et al.  Cyclic Evaluation of Transitivity of Reciprocal Relations , 2006, Soc. Choice Welf..

[90]  Bernard De Baets,et al.  On the compositional characterization of complete fuzzy pre-orders , 2008, Fuzzy Sets Syst..

[91]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[92]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[93]  Ying Luo,et al.  Generalised fuzzy weighted mean and its applications , 2009, Int. J. Gen. Syst..

[94]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[95]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[96]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[97]  S. Chanas,et al.  Single value simulation of fuzzy variables , 1988 .

[98]  C. J. Hearne Non-conventional Preference Relations in Decision Making , 1989 .

[99]  Leonid Kitainik,et al.  Fuzzy Decision Procedures with Binary Relations , 1993, Theory and Decision Library.

[100]  Christophe Labreuche,et al.  Preference modeling on totally ordered sets by the Sugeno integral , 2005, Discret. Appl. Math..

[101]  Ulrich Bodenhofer,et al.  Representations and constructions of similarity-based fuzzy orderings , 2003, Fuzzy Sets Syst..

[102]  S. Chanas,et al.  Single value simulation of fuzzy variable—some further results , 1989 .

[103]  Yukio Ogura,et al.  Set Defuzzification and Choquet Integral , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[104]  WangXuzhu,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001 .

[105]  Francisco Herrera,et al.  A fusion approach for managing multi-granularity linguistic term sets in decision making , 2000, Fuzzy Sets Syst..

[106]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..