Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications

We describe our methodology for solving NP-hard irregular placement problems. We deal with an accurate representation of objects bounded by circular arcs and line segments and allow their free rotations within a container. We formulate a basic irregular placement problem (IRPP), which covers a wide spectrum of practical packing, cutting, nesting, clustering, and layout problems. We provide a nonlinear programming (NLP) model of the problem, employing the phi-function technique. Our model involves a large number of inequalities with nonsmooth functions. We describe a solution tree for our placement problem and evaluate the number of its terminal nodes. We reduce IRPP problem to a sequence of NLP-subproblems with smooth functions.

[1]  Steffen Rebennack,et al.  Cutting ellipses from area-minimizing rectangles , 2014, J. Glob. Optim..

[2]  R. Alvarez-Valdes,et al.  A branch & bound algorithm for cutting and packing irregularly shaped pieces , 2013 .

[3]  Jens Egeblad,et al.  Fast neighborhood search for two- and three-dimensional nesting problems , 2007, Eur. J. Oper. Res..

[4]  Pedro Filipe de Monteiro Rocha Geometrical models and algorithms for irregular shapes placement problems , 2014 .

[5]  Franklina Maria Bragion de Toledo,et al.  Circle Covering Representation for Nesting problems with continuous rotations , 2014 .

[6]  Donald R. Jones A fully general, exact algorithm for nesting irregular shapes , 2014, J. Glob. Optim..

[7]  Julia A. Bennell,et al.  A tutorial in irregular shape packing problems , 2009, J. Oper. Res. Soc..

[8]  N. Chernov,et al.  Mathematical model and efficient algorithms for object packing problem , 2010, Comput. Geom..

[9]  Victor J. Milenkovic,et al.  Rotational polygon containment and minimum enclosure using only robust 2D constructions , 1999, Comput. Geom..

[10]  A. Miguel Gomes Irregular Packing Problems: Industrial Applications and New Directions Using Computational Geometry , 2013 .

[11]  Stephen C. H. Leung,et al.  Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem , 2012, Comput. Oper. Res..

[12]  Yu. G. Stoyan,et al.  Phi-Functions for 2D Objects Formed by Line Segments and Circular Arcs , 2012, Adv. Oper. Res..

[13]  Graham Kendall,et al.  Complete and robust no-fit polygon generation for the irregular stock cutting problem , 2007, Eur. J. Oper. Res..

[14]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[15]  Edmund K. Burke,et al.  Irregular Packing Using the Line and Arc No-Fit Polygon , 2010, Oper. Res..

[16]  Yu. G. Stoyan,et al.  Quasi-phi-functions and optimal packing of ellipses , 2016, J. Glob. Optim..

[17]  Leonidas J. Guibas,et al.  The complexity of cutting complexes , 1989, Discret. Comput. Geom..

[18]  Julia A. Bennell,et al.  Optimal clustering of a pair of irregular objects , 2015, J. Glob. Optim..

[19]  Yu. G. Stoyan,et al.  Covering a compact polygonal set by identical circles , 2010, Comput. Optim. Appl..

[20]  Hiroshi Nagamochi,et al.  An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem , 2009, Discret. Optim..

[21]  José Fernando Oliveira,et al.  Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming , 2006, Eur. J. Oper. Res..

[22]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..