Solving fuzzy linear programming problems with Interval Type-2 RHS

This paper presents two general methods to handle uncertainties in the right hand side parameters of a linear programming (LP) model by means of interval type-2 fuzzy sets (IT2 FS). In this paper, a LP problem with uncertain right side parameters treated as interval type-2 fuzzy sets is solved by two optimization strategies: The first one is a type-reduction method and the second one is a pre-defuzzified ¿ - cut approach. After the IT2 FS inference process, a real-valued solution must be found. In this way two methods based on classical optimization routines are presented to obtain optimal solutions when uncertain right hand side parameters exist.

[1]  M. Melgarejo,et al.  A Fast Recursive Method to Compute the Generalized Centroid of an Interval Type-2 Fuzzy Set , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[2]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[3]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[4]  H. J. Larson,et al.  Introduction to the Theory of Statistics , 1973 .

[5]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[6]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[7]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[8]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[9]  J. C. Figueroa García,et al.  Linear programming with Interval Type-2 Fuzzy Right Hand Side parameters , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[10]  Weldon A. Lodwick,et al.  Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization , 2007, Fuzzy Sets Syst..

[11]  H. Zimmermann,et al.  Fuzzy reasoning for solving fuzzy mathematical programming problems , 1993 .

[12]  J. Wolfowitz,et al.  An Introduction to the Theory of Statistics , 1951, Nature.

[13]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[14]  J. C. F. Garcia,et al.  Linear programming with Interval Type-2 Fuzzy Right Hand Side parameters , 2008, NAFIPS 2008.

[15]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[16]  Pandian Vasant,et al.  Application of Fuzzy Linear Programming in Production Planning , 2003, Fuzzy Optim. Decis. Mak..

[17]  Hans-Jürgen Zimmermann,et al.  Fuzzy mathematical programming , 1983, Comput. Oper. Res..

[18]  C. Bello,et al.  Linear Programming with fuzzy joint parameters: A Cumulative Membership Function approach , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[19]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[20]  Masahiro Inuiguchi,et al.  A possibilistic linear program is equivalent to a stochastic linear program in a special case , 1995, Fuzzy Sets Syst..

[21]  J. Kacprzyk,et al.  Optimization Models Using Fuzzy Sets and Possibility Theory , 1987 .

[22]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[23]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[24]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[25]  C.A. Pena-Reyes,et al.  Implementing Interval Type-2 Fuzzy Processors [Developmental Tools] , 2007, IEEE Computational Intelligence Magazine.