Comparative Study of Incremental Learning Algorithms in Multidimensional Outlier Detection on Data Stream

Multi-dimensional outlier detection (MOD) over data streams is one of the most significant data stream mining techniques. When multivariate data are streaming in high speed, outliers are to be dete ...

[1]  Jérôme Darmont,et al.  A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and On-Line Analysis Processing in the Cloud , 2015, Int. J. Data Warehous. Min..

[2]  Min Song,et al.  Handbook of Research on Text and Web Mining Technologies , 2008 .

[3]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[4]  Anthony K. H. Tung,et al.  Mining top-n local outliers in large databases , 2001, KDD '01.

[5]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[6]  Anthony Scime,et al.  Social Science Data Analysis: The Ethical Imperative , 2013 .

[7]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[8]  Maribel Yasmina Santos,et al.  Understanding the SNN Input Parameters and How They Affect the Clustering Results , 2015, Int. J. Data Warehous. Min..

[9]  Zaher Al Aghbari,et al.  Incremental Algorithm for Discovering Frequent Subsequences in Multiple Data Streams , 2011, Int. J. Data Warehous. Min..

[10]  Lotfi Lakhal,et al.  Constrained Cube Lattices for Multidimensional Database Mining , 2010, Int. J. Data Warehous. Min..

[11]  Sarajane Marques Peres,et al.  Gesture unit segmentation using support vector machines: segmenting gestures from rest positions , 2013, SAC '13.

[12]  Min Song,et al.  A Dynamic and Semantically-Aware Technique for Document Clustering in Biomedical Literature , 2009, Int. J. Data Warehous. Min..

[13]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[14]  Isabel Ramos,et al.  Ethical Data Mining Applications for Socio-Economic Development , 2013 .

[15]  Chris Mellish,et al.  Advances in Instance Selection for Instance-Based Learning Algorithms , 2002, Data Mining and Knowledge Discovery.

[16]  Matteo Golfarelli,et al.  A Survey on Temporal Data Warehousing , 2009, Int. J. Data Warehous. Min..