An M/G/1 Bernoulli feedback retrial queueing system with negative customers

A single server retrial queue with negative customers and two types of Bernoulli feedback is considered. A necessary and sufficient condition for the system to be stable is investigated. The system size probabilities at output epochs are obtained by using an embedded Markov chain. Further, the joint generating functions of queue length and server status are studied by using supplementary variables method. Some important system performance measures are derived. Busy period of the system is also discussed. Finally, extensive numerical illustrations are provided.

[1]  Tien Van Do,et al.  Bibliography on G-networks, negative customers and applications , 2011, Math. Comput. Model..

[2]  A. Gómez-Corral,et al.  Generalized birth and death processes with applications to queues with repeated attempts and negative arrivals , 1998 .

[3]  Bong Dae Choi,et al.  The M/M/c retrial queue with geometric loss and feedback☆ , 1998 .

[4]  J.R. Artalejo,et al.  G-networks: A versatile approach for work removal in queueing networks , 2000, Eur. J. Oper. Res..

[5]  Julian Keilson,et al.  A Service System with Unfilled Requests Repeated , 1968, Oper. Res..

[6]  Peter G. Harrison,et al.  SOJOURN TIMES IN SINGLE-SERVER QUEUES WITH NEGATIVE CUSTOMERS , 1993 .

[7]  B. Krishna Kumar,et al.  The M/G/1 retrial queue with Bernoulli schedules and general retrial times , 2002 .

[8]  Vidyadhar G. Kulkarni,et al.  Retrial queues revisited , 1998 .

[9]  Peter G. Harrison,et al.  The M/G/1 queue with negative customers , 1996, Advances in Applied Probability.

[10]  B. Krishna Kumar,et al.  The M/G/1 retrial queue with feedback and starting failures , 2002 .

[11]  Yong Wan Lee THE M=G=1 FEEDBACK RETRIAL QUEUE WITH TWO TYPES OF CUSTOMERS , 2005 .

[12]  Robert B. Cooper,et al.  An Introduction To Queueing Theory , 2016 .

[13]  Peng Zhang,et al.  A discrete-time retrial queue with negative customers and unreliable server , 2009, Comput. Ind. Eng..

[14]  Guy Pujolle,et al.  Introduction to queueing networks , 1987 .

[15]  Jesús R. Artalejo,et al.  On the busy period of the M/G/1 retrial queue , 2000 .

[16]  Jesús R. Artalejo,et al.  Retrial Queueing Systems: A Computational Approach , 2008 .

[17]  Vidyadhar G. Kulkarni,et al.  Feedback Retrial Queueing Systems , 1992 .

[18]  Gennadi Falin,et al.  A survey of retrial queues , 1990, Queueing Syst. Theory Appl..

[19]  B. Krishna Kumar,et al.  On multiserver feedback retrial queues with balking and control retrial rate , 2006, Ann. Oper. Res..

[20]  Jesus R. Artalejo,et al.  Accessible bibliography on retrial queues: Progress in 2000-2009 , 2010, Math. Comput. Model..

[21]  Gennadi Falin A single-line system with secondary orders , 1979 .

[22]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[23]  Linn I. Sennott,et al.  Technical Note - Mean Drifts and the Non-Ergodicity of Markov Chains , 1983, Oper. Res..

[24]  Jesús R. Artalejo,et al.  On the orbit characteristics of the M/G/1 retrial queue , 1996 .

[25]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[26]  Ivan Atencia,et al.  The discrete-time Geo/Geo/1 queue with negative customers and disasters , 2004, Comput. Oper. Res..

[27]  Jesús R. Artalejo,et al.  Performance analysis of a single-server queue with repeated attempts , 1999 .

[28]  P. P. Bocharov,et al.  G-Networks: Development of the Theory of Multiplicative Networks , 2003 .

[29]  Jesus R. Artalejo,et al.  Analysis of Markov Multiserver Retrial Queues with Negative Arrivals , 2001, Queueing Syst. Theory Appl..

[30]  Michael Pinedo,et al.  Queueing networks - customers, signals and product form solutions , 1999, Wiley-Interscience series in systems and optimization.

[31]  E. Gelenbe Product-form queueing networks with negative and positive customers , 1991 .

[32]  Jesús R. Artalejo,et al.  Retrial Queueing Systems , 2008 .

[33]  A. G. Pakes,et al.  Some Conditions for Ergodicity and Recurrence of Markov Chains , 1969, Oper. Res..

[34]  Brian Conolly,et al.  New results in the theory of repeated orders queueing systems , 1979 .

[35]  A. Krishnamoorthy,et al.  A single server feedback retrial queue with collisions , 2010, Comput. Oper. Res..