Network learning via multi-agent inverse transportation problems

Despite the ubiquity of transportation data, methods to infer the state parameters of a network either ignore sensitivity of route decisions, require route enumeration for parameterizing descriptive models of route selection, or require complex bilevel models of route assignment behavior. These limitations prevent modelers from fully exploiting ubiquitous data in monitoring transportation networks. Inverse optimization methods that capture network route choice behavior can address this gap, but they are designed to take observations of the same model to learn the parameters of that model, which is statistically inefficient (e.g., requires estimating population route and link flows). New inverse optimization models and supporting algorithms are proposed to learn the parameters of heterogeneous travelers’ route behavior to infer shared network state parameters (e.g., link capacity dual prices). The inferred values are consistent with observations of each agent’s optimization behavior. We prove that the meth...

[1]  Sung-Pil Hong,et al.  A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes , 2017 .

[2]  Anders Karlström,et al.  A link based network route choice model with unrestricted choice set , 2013 .

[3]  Yossi Feinberg,et al.  Characterizing Common Priors in the Form of Posteriors , 2000, J. Econ. Theory.

[4]  Zuo-Jun Max Shen,et al.  Inverse Optimization with Noisy Data , 2015, Oper. Res..

[5]  Michael A. West,et al.  Bayesian Inference on Network Traffic Using Link Count Data , 1998 .

[6]  Sarah Williams,et al.  The digital matatu project: Using cell phones to create an open source data for Nairobi's semi-formal bus system , 2015 .

[7]  Yinhai Wang,et al.  Uncovering urban human mobility from large scale taxi GPS data , 2015 .

[8]  Edoardo M. Airoldi,et al.  Estimating Latent Processes on a Network From Indirect Measurements , 2012, 1212.0178.

[9]  Joseph Y. J. Chow,et al.  Activity-based Market Equilibrium for Capacitated Multimodal Transport Systems , 2015 .

[10]  Eran Ben-Elia,et al.  Which road do I take? A learning-based model of route-choice behavior with real-time information , 2010 .

[11]  Daniel Kuhn,et al.  Data-driven Inverse Optimization with Incomplete Information , 2015 .

[12]  Warren B. Powell,et al.  Information Collection on a Graph , 2011, Oper. Res..

[13]  Michel Bierlaire,et al.  Capturing correlation with subnetworks in route choice models , 2007 .

[14]  Carlos F. Daganzo,et al.  On Stochastic Models of Traffic Assignment , 1977 .

[15]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[16]  Hussein Dia,et al.  An agent-based approach to modelling driver route choice behaviour under the influence of real-time information , 2002 .

[17]  Philippe L. Toint,et al.  On an instance of the inverse shortest paths problem , 1992, Math. Program..

[18]  Satish V. Ukkusuri,et al.  Urban Link Travel Time Estimation Using Large-scale Taxi Data with Partial Information , 2013 .

[19]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[20]  Marcela Munizaga,et al.  Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile , 2012 .

[21]  Shlomo Bekhor,et al.  Link-Nested Logit Model of Route Choice: Overcoming Route Overlapping Problem , 1998 .

[22]  Martin L. Hazelton,et al.  Network tomography for integer-valued traffic , 2015, 1501.02514.

[23]  Carlo G. Prato,et al.  Route choice modeling: past, present and future research directions , 2009 .

[24]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[25]  Takashi Akamatsu,et al.  Cyclic flows, Markov process and stochastic traffic assignment , 1996 .

[26]  Wilfred W. Recker,et al.  The Household Activity Pattern Problem: General Formulation and Solution , 1995 .

[27]  Paul Schonfeld,et al.  Stochastic dynamic switching in fixed and flexible transit services as market entry-exit real options , 2018, Transportation Research Part C: Emerging Technologies.

[28]  E. Cascetta,et al.  A MODIFIED LOGIT ROUTE CHOICE MODEL OVERCOMING PATH OVERLAPPING PROBLEMS. SPECIFICATION AND SOME CALIBRATION RESULTS FOR INTERURBAN NETWORKS , 1996 .

[29]  Stephen G. Ritchie,et al.  Nonlinear inverse optimization for parameter estimation of commodity-vehicle-decoupled freight assignment , 2014 .

[30]  Otto Anker Nielsen,et al.  Stochastic User Equilibrium with Equilibrated Choice Sets: Part I – Model Formulations under Alternative Distributions and Restrictions. , 2015 .

[31]  Peter Brucker,et al.  Inverse scheduling with maximum lateness objective , 2009, J. Sched..

[32]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[33]  Daniel Kuhn,et al.  Data-driven inverse optimization with imperfect information , 2015, Mathematical Programming.

[34]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.

[35]  Liwei Zhang,et al.  An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems , 2009 .

[36]  Hani S. Mahmassani,et al.  Modeling Inertia and Compliance Mechanisms in Route Choice Behavior Under Real-Time Information , 2000 .

[37]  Joseph Y. J. Chow,et al.  Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem , 2012 .

[38]  Rainer E. Burkard,et al.  Inverse median problems , 2004, Discret. Optim..

[39]  Lizhi Wang,et al.  Cutting plane algorithms for the inverse mixed integer linear programming problem , 2009, Oper. Res. Lett..

[40]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[41]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[42]  Ravindra K. Ahuja,et al.  Inverse Optimization , 2001, Oper. Res..

[43]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[44]  George L. Nemhauser,et al.  Management of Railroad Impedances for Shortest Path-based Routing , 2002, Electron. Notes Theor. Comput. Sci..

[45]  Stephen G. Ritchie,et al.  Inverse vehicle routing for activity-based urban freight forecast modeling and city logistics , 2016 .

[46]  Song Gao Modeling Strategic Route Choice and Real-Time Information Impacts in Stochastic and Time-Dependent Networks , 2012, IEEE Transactions on Intelligent Transportation Systems.

[47]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[48]  Horst W. Hamacher,et al.  Capacity inverse minimum cost flow problem , 2010, J. Comb. Optim..

[49]  Özlem Ergun,et al.  Mechanism design for a multicommodity flow game in service network alliances , 2008, Oper. Res. Lett..

[50]  M. Bell THE ESTIMATION OF ORIGIN-DESTINATION MATRICES BY CONSTRAINED GENERALISED LEAST SQUARES , 1991 .

[51]  Roberto Cominetti,et al.  Markovian traffic equilibrium , 2007, Math. Program..

[52]  Alexandre M. Bayen,et al.  Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment , 2009 .

[53]  Vishal Gupta,et al.  Inverse Optimization: A New Perspective on the Black-Litterman Model , 2012, Oper. Res..

[54]  Marta C. González,et al.  Origin-destination trips by purpose and time of day inferred from mobile phone data , 2015 .

[55]  John R. Birge,et al.  Inverse Optimization for the Recovery of Market Structure from Market Outcomes: An Application to the MISO Electricity Market , 2017, Oper. Res..

[56]  Moshe E. Ben-Akiva,et al.  Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows , 2002, Transp. Sci..