Conventional and Advanced Technologies for Wireless Transmission in Underground Mine

[1]  Juan-de-Dios Sánchez López,et al.  Trends of the Optical Wireless Communications , 2011 .

[2]  Edward A. Lee,et al.  Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels , 1993, IEEE J. Sel. Areas Commun..

[3]  Tanmoy Maity,et al.  Design of surveillance and safety system for underground coal mines based on low power WSN , 2014, 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014).

[4]  Sevia Mahdaliza Idrus,et al.  Optical Wireless Communications: IR for Wireless Connectivity , 2008 .

[5]  J R Meyer-Arendt,et al.  Radiometry and photometry: units and conversion factors. , 1968, Applied optics.

[6]  Harald Haas,et al.  Novel Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) for Optical Wireless , 2012, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

[7]  Simona Riurean,et al.  LiFi — The path to a new way of communication , 2017, 2017 12th Iberian Conference on Information Systems and Technologies (CISTI).

[8]  H. Haas,et al.  On the Performance of Different OFDM Based Optical Wireless Communication Systems , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[9]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[10]  Arvind Kumar,et al.  Trapped miners detection, location and communication system , 2003 .

[11]  H. Haas,et al.  Optical OFDM With Single-Photon Avalanche Diode , 2015, IEEE Photonics Technology Letters.

[12]  Mark Hedley,et al.  Accurate wireless tracking for underground mining , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[13]  Harald Haas,et al.  A guide to wireless networking by light , 2017 .

[14]  D. O’brien,et al.  High-Speed Visible Light Communications Using Multiple-Resonant Equalization , 2008, IEEE Photonics Technology Letters.

[15]  Rui L. Aguiar,et al.  Design techniques for high performance optical wireless front-ends , 2003 .

[16]  Wei-Wen Hu,et al.  Design and implementation of anti low-frequency noise in visible light communications , 2017, 2017 International Conference on Applied System Innovation (ICASI).

[17]  J. Armstrong,et al.  OFDM for Optical Communications , 2009, Journal of Lightwave Technology.

[18]  S. Randel,et al.  PAM-DMT for Intensity-Modulated and Direct-Detection Optical Communication Systems , 2009, IEEE Photonics Technology Letters.

[19]  Joseph Waynert,et al.  An overview of underground coal miner electronic tracking system technologies , 2012, 2012 IEEE Industry Applications Society Annual Meeting.

[20]  Deva K. Borah,et al.  A review of communication-oriented optical wireless systems , 2012, EURASIP J. Wirel. Commun. Netw..

[21]  Mohamed M. Abdallah,et al.  Ray tracing based channel modeling for visible light communications , 2014, 2014 22nd Signal Processing and Communications Applications Conference (SIU).

[22]  Ch. S. N. Murthy,et al.  Mine Rescue Robot System - A Review , 2015 .

[23]  J. K. Kwon,et al.  Simulation modeling of visible light communication channel for automotive applications , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[24]  Sofiène Affes,et al.  Cost-effective localization in underground mines using new SIMO/MIMO-like fingerprints and artificial neural networks , 2014, 2014 IEEE International Conference on Communications Workshops (ICC).

[25]  Michael D. Bedford,et al.  Underground wireless networking: A performance evaluation of communication standards for tunnelling and mining , 2014 .

[26]  Zabih Ghassemlooy,et al.  Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems , 2015, IEEE Wireless Communications.

[27]  Sujan Rajbhandari,et al.  A comparative study of optical concentrators for visible light communications , 2017, OPTO.

[28]  Joseph M. Kahn,et al.  Modulation Schemes for Single-Laser 100 Gb/s Links: Multicarrier , 2015, Journal of Lightwave Technology.

[29]  Latif Ullah Khan,et al.  Visible light communication: Applications, architecture, standardization and research challenges , 2017, Digit. Commun. Networks.

[30]  Stefan Videv,et al.  VLC: Beyond point-to-point communication , 2014, IEEE Communications Magazine.

[31]  Wei Xu,et al.  On visible light communication using LED array with DFT-Spread OFDM , 2014, 2014 IEEE International Conference on Communications (ICC).

[32]  Norbert H. Nessler Electromagnetic Location System for Trapped Miners , 2000 .

[33]  H. S. Virk History of Luminescence from Ancient to Modern Times , 2015 .

[34]  Hibatallah Alwazani,et al.  Design of RGB Laser Diode Drivers for Smart Lighting and Li-Fi using MATLAB GUI , 2019, 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE).

[35]  Joseph M. Kahn,et al.  Wireless Infrared Communications , 1994 .

[36]  Sien Chi,et al.  Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication , 2013, IEEE Photonics Journal.

[37]  Jeff Kravitz,et al.  Advances In Mine Emergency Communications , 1994 .

[38]  John R. Barry,et al.  Performance of pulse-position modulation on measured non-directed indoor infrared channels , 1996, IEEE Trans. Commun..

[39]  Deming Wang,et al.  Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method , 2015 .

[40]  J. Durkin Electro magnatic detection of trapped miners , 1984, IEEE Communications Magazine.

[41]  Joseph M. Kahn,et al.  Comparison of Orthogonal Frequency-Division Multiplexing and Pulse-Amplitude Modulation in Indoor Optical Wireless Links , 2012, IEEE Transactions on Communications.

[42]  Murat Uysal,et al.  A Mobile Channel Model for VLC and Application to Adaptive System Design , 2017, IEEE Communications Letters.

[43]  Zabih Ghassemlooy,et al.  Visible Light Communications : Theory and Applications , 2017 .

[44]  Steve Hranilovic,et al.  Design and Implementation of Color-Shift Keying for Visible Light Communications , 2014, Journal of Lightwave Technology.

[45]  Joseph M. Kahn,et al.  Modeling of nondirected wireless infrared channels , 1997, IEEE Trans. Commun..

[46]  Z. Ghassemlooy,et al.  Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions , 2013, Journal of Lightwave Technology.

[47]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[48]  Qingquan Liu,et al.  High-Speed Visible Light Communications: Enabling Technologies and State of the Art , 2018 .

[49]  Yu-Chieh Chi,et al.  Violet Laser Diode Enables Lighting Communication , 2017, Scientific Reports.

[50]  Hao-Chung Kuo,et al.  Blue Laser Diode Based Free-space Optical Data Transmission elevated to 18 Gbps over 16 m , 2017, Scientific Reports.

[51]  Harald Haas,et al.  Downlink Performance of Optical Attocell Networks , 2016, Journal of Lightwave Technology.

[52]  Harald Haas,et al.  Predistortion in Optical Wireless Transmission Using OFDM , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[53]  Lajos Hanzo,et al.  Analysis and Design of Three-Stage Concatenated Color-Shift Keying , 2015, IEEE Transactions on Vehicular Technology.

[54]  Murat Uysal,et al.  Optical wireless communications — An emerging technology , 2016, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[55]  Jean Armstrong,et al.  Power efficient optical OFDM , 2006 .

[56]  Christofer Toumazou,et al.  Analogue IC design : the current-mode approach , 1993 .

[57]  Sung-Mo Kang,et al.  An analysis of inductive peaking in photoreceiver design , 1992 .

[58]  D. Rodger,et al.  Modeling electromagnetic field propagation in eddy-current regions of low conductivity , 2006, IEEE Transactions on Magnetics.

[59]  Mohammad Noshad,et al.  Can Visible Light Communications Provide Gb/s Service? , 2013, ArXiv.

[60]  K. Sindhubala,et al.  Simulation of VLC system under the influence of optical background noise using filtering technique , 2017 .

[61]  Mohsen Kavehrad,et al.  Indoor wireless infrared channel characterization by measurements , 2001, IEEE Trans. Veh. Technol..

[62]  Michael M. Green,et al.  A Silicon-Based Low-Power Broadband Transimpedance Amplifier , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[63]  M. Paavola,et al.  6 – Wireless networks in underground mines , 2016 .

[64]  Robin R. Murphy,et al.  Underground Mine Communications: A Survey , 2009, IEEE Communications Surveys & Tutorials.

[65]  Chenming Zhou,et al.  Modeling and Measurement of Radio Propagation in Tunnel Environments , 2017, IEEE Antennas and Wireless Propagation Letters.

[66]  Murat Uysal,et al.  Channel Modeling for Visible Light Communications , 2016 .

[67]  Steve Collins,et al.  High gain, wide field of view concentrator for optical communications. , 2014, Optics letters.

[68]  Murat Uysal,et al.  Channel Modeling and Characterization for Visible Light Communications , 2015, IEEE Photonics Journal.

[69]  S. Reineke,et al.  Organic light-emitting diodes , 2019, Handbook of Organic Materials for Electronic and Photonic Devices.

[70]  V. Lupei,et al.  Nd:YAG at its 50th anniversary: Still to learn , 2016 .

[71]  Mohsen Kavehrad,et al.  On the performance of single- and multi-carrie modulation schemes for indoor visible light communication systems , 2014, 2014 IEEE Global Communications Conference.

[72]  M. Kavehard,et al.  Multispot diffusing configuration for wireless infrared access , 2000, IEEE Trans. Commun..

[73]  Volker Jungnickel,et al.  A physical model of the wireless infrared communication channel , 2002, IEEE J. Sel. Areas Commun..

[74]  Mutamed Khatib Advanced Trends in Wireless Communications , 2011 .

[75]  N. Fujimoto,et al.  477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[76]  Davide Dardari,et al.  A theoretical characterization of nonlinear distortion effects in OFDM systems , 2000, IEEE Trans. Commun..

[77]  Adam Böcker,et al.  An implementation of a visible light communication system based on LED lights , 2015 .

[78]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[79]  Stefan Videv,et al.  Unlocking Spectral Efficiency in Intensity Modulation and Direct Detection Systems , 2015, IEEE Journal on Selected Areas in Communications.

[80]  Zhongmin Wang,et al.  A cross-layer congestion control algorithm for underground mine video transmission over wireless networks , 2014, Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control.

[81]  Behzad Razavi Design of intergrated circuits for optical communications , 2002 .

[82]  Sridhar Rajagopal,et al.  IEEE 802.15.7 physical layer summary , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[83]  D. O’brien,et al.  A 200 Mb/s VLC demonstration with a SPAD based receiver , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[84]  Andreas Nüchter,et al.  Irma3D - an Intelligent Robot for Mapping Applications , 2013, TA.

[85]  K. Langer,et al.  White Light Wireless Transmission at 200${+}$ Mb/s Net Data Rate by Use of Discrete-Multitone Modulation , 2009, IEEE Photonics Technology Letters.

[86]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[87]  Sebastian Randel,et al.  Advanced Modulation Schemes for Short-Range Optical Communications , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  M. S. Islim,et al.  Advanced LiFi technology: Laser light , 2020, OPTO.

[89]  Harald Haas,et al.  Spectrally enhanced PAM-DMT for IM/DD optical wireless communications , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[90]  John Durkin,et al.  Performance evaluation of electromagnetic techniques for the location of trapped miners , 1982 .

[91]  Ravinder Singh,et al.  An Enhanced Color Shift Keying Modulation Scheme for High-Speed Wireless Visible Light Communications , 2014, Journal of Lightwave Technology.

[92]  Yi-Jen Chan,et al.  Bandwidth enhancement of transimpedance amplifier by a capacitive-peaking design , 1999, IEEE J. Solid State Circuits.

[93]  P. K. Kannan,et al.  Iterative site-based modeling for wireless infrared channels: an analysis and implementation , 2002 .

[94]  C. Wei,et al.  3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[95]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979 .

[96]  Arthur J. Lowery,et al.  SPC07-4: Performance of Asymmetrically Clipped Optical OFDM in AWGN for an Intensity Modulated Direct Detection System , 2006, IEEE Globecom 2006.

[97]  Ivan Andonovic,et al.  Two approaches for the modified asymmetrically clipped optical orthogonal frequency division multiplexing system , 2013, 2013 Second International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC).

[98]  J.R. Wait Electromagnetic and electrochemical response of geological conductors , 1989, Digest on Antennas and Propagation Society International Symposium.

[99]  Brian M. Sadler,et al.  Constellation design for color-shift keying using billiards algorithms , 2010, 2010 IEEE Globecom Workshops.

[100]  J. Vasquez,et al.  Underground wireless communications using high-temperature superconducting receivers , 2004, IEEE Transactions on Applied Superconductivity.

[101]  Zabih Ghassemlooy,et al.  Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. , 2014, Optics express.

[102]  J. Speight,et al.  Chemistry and technology of coal , 2012 .

[103]  S. Affes,et al.  Radio Wave Characterization and Modeling in Underground Mine Tunnels , 2008, IEEE Transactions on Antennas and Propagation.

[104]  M. Dayne Aldridge Analysis of communication systems in coal mines , 1973 .

[105]  Jean Armstrong,et al.  Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN , 2008, IEEE Communications Letters.

[106]  Ian F. Akyildiz,et al.  Wireless underground sensor networks: Research challenges , 2006, Ad Hoc Networks.

[107]  Harald Haas,et al.  A geometry-based multiple bounce model for visible light communication channels , 2016, 2016 International Wireless Communications and Mobile Computing Conference (IWCMC).

[108]  Asunción Santamaría,et al.  Monte Carlo calculation of impulse response on diffuse IR wireless indoor channels , 1998 .

[109]  Yunje Oh,et al.  Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System , 2008, 2008 4th IEEE International Conference on Circuits and Systems for Communications.

[110]  Cheng-Xiang Wang,et al.  Optical Wireless Communication Channel Measurements and Models , 2018, IEEE Communications Surveys & Tutorials.

[111]  Nan Chi,et al.  750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[112]  Rachmad Vidya Wicaksana Putra,et al.  Noise and Bandwidth Consideration in Designing Op-Amp Based Transimpedance Amplifier for VLC , 2018 .

[113]  Hongda Chen,et al.  A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. , 2014, Optics express.

[114]  E. Ciaramella,et al.  1 Gbit/s visible light communication link based on phosphorescent white LED , 2012, 2012 International Conference on Photonics in Switching (PS).

[115]  Lauri Sydänheimo,et al.  Reliable mobile computing to underground mine , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[116]  Siyuan Chen,et al.  2.08Gbit/s visible light communication utilizing power exponential pre-equalization , 2016, 2016 25th Wireless and Optical Communication Conference (WOCC).

[117]  Harald Haas,et al.  Detection statistics and error performance of SPAD-based optical receivers , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[118]  Sujan Rajbhandari,et al.  Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit , 2016 .

[119]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[120]  A. J. Farstad,et al.  Electromagnetic direction finding experiments for location of trapped miners , 1973 .

[121]  Nan Chi,et al.  LED-Based Visible Light Communications , 2018 .

[122]  Tanmoy Maity,et al.  Wireless Communication and Environment Monitoring in Underground Coal Mines – Review , 2015 .

[123]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[124]  Mohammad Noshad,et al.  Hadamard-Coded Modulation for Visible Light Communications , 2014, IEEE Transactions on Communications.

[125]  Honglei Li,et al.  High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit , 2014, IEEE Photonics Technology Letters.

[126]  C. Mead,et al.  White noise in MOS transistors and resistors , 1993, IEEE Circuits and Devices Magazine.

[127]  Sima Noghanian,et al.  A Survey of Wireless Communications and Propagation Modeling in Underground Mines , 2013, IEEE Communications Surveys & Tutorials.

[128]  Sang-Kook Han,et al.  Modulation bandwidth enhancement of white-LED-based visible light communications using electrical equalizations , 2015, Photonics West - Optoelectronic Materials and Devices.

[129]  Luis Nero Alves,et al.  Lighting the Wireless World: The Promise and Challenges of Visible Light Communication , 2017, IEEE Consumer Electronics Magazine.

[130]  Hao-Chung Kuo,et al.  Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication , 2015, Scientific Reports.

[131]  F. J. Lopez-Hernandez,et al.  DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels , 1997 .

[132]  Jose Martin Luna-Rivera,et al.  A generalized multi‐wavelength propagation model for VLC indoor channels using Monte Carlo simulation , 2018, Trans. Emerg. Telecommun. Technol..

[133]  J. Armstrong,et al.  Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems , 2013, Journal of Lightwave Technology.