CRISPR-Cas9 driven structural elucidation of the heteroexopolysaccharides from Paenibacillus polymyxa DSM 365.

[1]  C. Schilling,et al.  Structural elucidation of the fucose containing polysaccharide of Paenibacillus polymyxa DSM 365. , 2021, Carbohydrate polymers.

[2]  C. Schilling,et al.  Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365. , 2020, Metabolic engineering.

[3]  C. Schilling,et al.  Metabolic engineering for production of functional polysaccharides. , 2020, Current opinion in biotechnology.

[4]  B. Rehm,et al.  Bacterial biopolymers: from pathogenesis to advanced materials , 2020, Nature Reviews Microbiology.

[5]  C. Schäffer,et al.  Pyruvate Substitutions on Glycoconjugates , 2019, International journal of molecular sciences.

[6]  Haeyoung Jeong,et al.  Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health , 2019, Front. Microbiol..

[7]  R. Linhardt,et al.  The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. , 2018, Current opinion in biotechnology.

[8]  Xiaoyuan Chen,et al.  Polysaccharide‐Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside , 2018, Advanced science.

[9]  Brady F. Cress,et al.  Tailor-made exopolysaccharides—CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa , 2017, Synthetic biology.

[10]  Z. Yuan,et al.  Current knowledge and perspectives of Paenibacillus: a review , 2016, Microbial Cell Factories.

[11]  Marius Rütering,et al.  Controlled production of polysaccharides-exploiting nutrient supply for levan and heteropolysaccharide formation in Paenibacillus sp. , 2016, Carbohydrate polymers.

[12]  J. Schmid,et al.  Enzymatic Transformations Involved in the Biosynthesis of Microbial Exo‐polysaccharides Based on the Assembly of Repeat Units , 2015, Chembiochem : a European journal of chemical biology.

[13]  J. Schmid,et al.  High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. , 2015, Carbohydrate polymers.

[14]  San-Lang Wang,et al.  Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities , 2015, Marine drugs.

[15]  Lifu Song,et al.  Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. , 2015, Journal of biotechnology.

[16]  J. Schmid,et al.  Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. , 2014, Journal of chromatography. A.

[17]  R. Linhardt,et al.  Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. , 2014, FEMS microbiology reviews.

[18]  Zhenglin Du,et al.  Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes , 2014, PLoS genetics.

[19]  A. Olgun,et al.  Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa: Batch and column studies , 2013 .

[20]  J. Lam,et al.  Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. , 2013, Environmental microbiology.

[21]  C. Qian,et al.  Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. , 2013, Bioresource technology.

[22]  Yanli Wang,et al.  Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants , 2012 .

[23]  Maria A M Reis,et al.  Advances in bacterial exopolysaccharides: from production to biotechnological applications. , 2011, Trends in biotechnology.

[24]  W. Raza,et al.  Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. , 2011, Bioresource technology.

[25]  Jason A. Burdick,et al.  Hyaluronic Acid Hydrogels for Biomedical Applications , 2011, Advanced materials.

[26]  Magnus Lundborg,et al.  Structural analysis of glycans by NMR chemical shift prediction. , 2011, Analytical chemistry.

[27]  Zhaoxin Lu,et al.  In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 , 2010 .

[28]  Zhaoxin Lu,et al.  Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 , 2010 .

[29]  Susan E. Brown,et al.  Genome of the Actinomycete Plant Pathogen Clavibacter michiganensis subsp. sepedonicus Suggests Recent Niche Adaptation , 2008, Journal of bacteriology.

[30]  D. Nam,et al.  Production and physicochemical characterization of β-glucan produced byPaenibacillus polymyxa JB115 , 2007 .

[31]  Xiaolian Gao,et al.  IP‐COSY, a totally in‐phase and sensitive COSY experiment , 2005, Magnetic resonance in chemistry : MRC.

[32]  G. Sassaki,et al.  Rapid synthesis of partially O-methylated alditol acetate standards for GC-MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. , 2005, Carbohydrate research.

[33]  Fergus G. Priest,et al.  Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test , 2004, Antonie van Leeuwenhoek.

[34]  M. Aguilera,et al.  Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. , 2001, International journal of systematic and evolutionary microbiology.

[35]  C. Biliaderis,et al.  Physicochemical properties and application of pullulan edible films and coatings in fruit preservation , 2001 .

[36]  S. Riva Biocatalytic modification of natural products. , 2001, Current opinion in chemical biology.

[37]  K. Komagata,et al.  Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. , 1997, International journal of systematic bacteriology.

[38]  In-Young Lee,et al.  Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa , 1997 .

[39]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[40]  U. Galili Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. , 1993, Immunology today.

[41]  G. T. Tsao,et al.  Production of optically active 2,3‐butanediol by Bacillus polymyxa , 1988, Biotechnology and bioengineering.

[42]  P. Albersheim,et al.  Selective degradation of the glycosyluroic acid residues of complex carbohydrates by lithium dissolved in ethylenediamine , 1987 .

[43]  I. Dea,et al.  Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa , 1986 .

[44]  P. Jansson A practical guide to the methylation analysis of carbohydrates , 1976 .

[45]  J. A. Cifonelli,et al.  [7] Isolation and characterization of connective tissue polysaccharides , 1972 .

[46]  Eizi Ninomiya,et al.  Bacterial polysaccharide from bacillus polymyxa No. 271 , 1969 .

[47]  S. Hakomori A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. , 1964, Journal of biochemistry.

[48]  J. Irvine,et al.  C.—The alkylation of sugars , 1903 .