Large-scale cortical correlation structure of spontaneous oscillatory activity

[1]  Jessica A. Turner,et al.  Neuroinformatics Original Research Article , 2022 .

[2]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[3]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  I. Fried,et al.  Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex , 2008, Nature Neuroscience.

[5]  M. Corbetta,et al.  Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis , 2011, Proceedings of the National Academy of Sciences.

[6]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[7]  A. Schnitzler,et al.  Dynamic imaging of coherent sources: Studying neural interactions in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Corbetta,et al.  Temporal dynamics of spontaneous MEG activity in brain networks , 2010, Proceedings of the National Academy of Sciences.

[9]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[10]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[11]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[13]  T. Koenig,et al.  Topographic Electrophysiological Signatures of fMRI Resting State Networks , 2010, PloS one.

[14]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[15]  Inga M. Schepers,et al.  Functionally specific oscillatory activity correlates between visual and auditory cortex in the blind. , 2012, Brain : a journal of neurology.

[16]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[17]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[18]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[19]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[20]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[21]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[22]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[23]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[24]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[25]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[26]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[27]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[28]  M. Raichle,et al.  Disease and the brain's dark energy , 2010, Nature Reviews Neurology.

[29]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.

[30]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[31]  N. Logothetis,et al.  The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies , 2012, The Journal of Neuroscience.

[32]  M. Corbetta,et al.  Learning sculpts the spontaneous activity of the resting human brain , 2009, Proceedings of the National Academy of Sciences.

[33]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[34]  V. Haughton,et al.  Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. , 2001, AJNR. American journal of neuroradiology.

[35]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[37]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[38]  Andreas K. Engel,et al.  Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception , 2011, Neuron.

[39]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[40]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[41]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[42]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[43]  Jeff H. Duyn,et al.  Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography , 2010, NeuroImage.

[44]  Matthew J. Brookes,et al.  Measuring functional connectivity using MEG: Methodology and comparison with fcMRI , 2011, NeuroImage.

[45]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[46]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[47]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[48]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[49]  Justin L. Vincent,et al.  Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[50]  R. Eckhorn,et al.  Amplitude envelope correlation detects coupling among incoherent brain signals , 2000, Neuroreport.

[51]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[52]  K. Miller,et al.  Direct electrophysiological measurement of human default network areas , 2009, Proceedings of the National Academy of Sciences.

[53]  Andreas K. Engel,et al.  Buildup of Choice-Predictive Activity in Human Motor Cortex during Perceptual Decision Making , 2009, Current Biology.

[54]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[55]  Justin L. Vincent,et al.  Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[56]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[57]  R. Oostenveld,et al.  Neuronal Dynamics Underlying High- and Low-Frequency EEG Oscillations Contribute Independently to the Human BOLD Signal , 2011, Neuron.

[58]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[59]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[60]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[61]  A. Sirota,et al.  The hippocampus: hub of brain network communication for memory , 2011, Trends in Cognitive Sciences.