Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content
暂无分享,去创建一个
[1] B. Yoder,et al. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .
[2] J. Schjoerring,et al. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .
[3] D. Kimes. Modeling the directional reflectance from complete homogeneous vegetation canopies with various leaf-orientation distributions , 1984 .
[4] A. Gitelson,et al. Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .
[5] Roberta E. Martin,et al. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .
[6] W. Verhoef. Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .
[7] Donald G. Bullock,et al. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn , 1998 .
[8] Marvin L. Stone,et al. Chlorophyll Estimation Using Multispectral Reflectance and Height Sensing , 2007 .
[9] J. Clevers. The use of imaging spectrometry for agricultural applications , 1999 .
[10] A. Richardson,et al. Interaction of Light with a Plant Canopy , 1968 .
[11] J. Dash,et al. The MERIS terrestrial chlorophyll index , 2004 .
[12] N. Oppelt,et al. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data , 2004 .
[13] Chaoyang Wu,et al. Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .
[14] J. Clevers,et al. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data , 2004 .
[15] Kenneth G. Cassman,et al. INCREASED N-USE EFFICIENCY USING A CHLOROPHYLL METER ON HIGH-YIELDING IRRIGATED RICE , 1996 .
[16] D. Horler,et al. The red edge of plant leaf reflectance , 1983 .
[17] Andres Kuusk,et al. The angular distribution of reflectance and vegetation indices in barley and clover canopies , 1991 .
[18] Moon S. Kim,et al. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .
[19] P. Curran. Remote sensing of foliar chemistry , 1989 .
[20] Pablo J. Zarco-Tejada,et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .
[21] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[22] F. Baret,et al. Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. , 2006, Journal of experimental botany.
[23] B. Hansen. Determination of nitrogen as elementary N, an alternative to Kjeldahl. , 1989 .
[24] W. Verhoef,et al. PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .
[25] G. Guyot,et al. Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux , 1988 .
[26] J. Dungan,et al. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.
[27] C. Tucker. Asymptotic nature of grass canopy spectral reflectance. , 1977, Applied optics.
[28] A. Gitelson,et al. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .
[29] J. S. Schepers,et al. Use of a Chlorophyll Meter to Monitor Nitrogen Status and Schedule Fertigation for Corn , 1995 .
[30] A. Skidmore,et al. MERIS and the red-edge position , 2001 .
[31] Yuri A. Gritz,et al. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.
[32] E. B. Knipling. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .
[33] F. Baret,et al. Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .
[34] J. Vos,et al. Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage , 1993, Potato Research.
[35] Michael E. Schaepman,et al. Estimating canopy water content using hyperspectral remote sensing data , 2010, Int. J. Appl. Earth Obs. Geoinformation.
[36] Hans Lambers,et al. Plant Physiological Ecology , 1998, Springer New York.
[37] W. Marsden. I and J , 2012 .
[38] A. K. Skidmore,et al. Derivation of the red edge index using the MERIS standard band setting , 2002 .
[40] W. Collins,et al. Remote sensing of crop type and maturity , 1978 .
[41] John R. Miller,et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .
[42] G. Rondeaux,et al. Optimization of soil-adjusted vegetation indices , 1996 .
[43] N. Oppelt. Monitoring of Plant Chlorophyll and Nitrogen Status Using the Airborne Imaging Spectrometer AVIS , 2002 .
[44] P. Strevens. Iii , 1985 .
[45] Prasad S. Thenkabail,et al. Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .