Visualization Schemas and a Web-Based Architecture for Custom Multiple-View Visualization of Multiple-Table Databases

Relational databases provide significant flexibility to organize, store, and manipulate an infinite variety of complex data collections. This flexibility is enabled by the concept of relational data Schemas, which allow data owners to easily design custom databases according to their unique needs. However, user interfaces and information visualizations for accessing and utilizing databases have not kept pace with this level of flexibility. Visualizations need to integrate multiple tables and diverse visualization tools into custom solutions. This paper describes advances to Snap-Together Visualization, introduces Visualization Schemas, and presents an extensible system architecture. The Snap model for custom multiple-view visualization establishes an analogy to the relational data model, enabling coordinated data design and visualization design. Visualization Schemas are a natural extension to data Schemas, and provide a user interface that enables data owners to rapidly construct and disseminate custom visualizations without programming. The web-based software architecture supports run-time extensibility, enabling end-user integration and dissemination of diverse data and visualization tools from the field.

[1]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[2]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[3]  Paul E. Haeberli,et al.  ConMan: a visual programming language for interactive graphics , 1988, SIGGRAPH.

[4]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[5]  Ben Shneiderman,et al.  Image Browsers: Taxonomy, Guidelines, and Informal Specifications , 1994 .

[6]  Allan S. Jacobson,et al.  LinkWinds: interactive scientific data analysis and visualization , 1994, CACM.

[7]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[8]  Ben Shneiderman,et al.  Image-Browser Taxonomy and Guidelines for Designers , 1995, IEEE Softw..

[9]  C. Ahlberg,et al.  IVEE : An Information Visualization & Exploration Environment , 1995 .

[10]  Tomás Isakowitz,et al.  RMM: a methodology for structured hypermedia design , 1995, CACM.

[11]  Christopher Ahlberg,et al.  IVEE: an Information Visualization and Exploration Environment , 1995, Proceedings of Visualization 1995 Conference.

[12]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[13]  Michael Stonebraker,et al.  Tioga-2: a direct manipulation database visualization environment , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[14]  Mary Shaw,et al.  Software architecture - perspectives on an emerging discipline , 1996 .

[15]  J. Myllymaki,et al.  DEVise: integrated querying and visual exploration of large datasets , 1997, SIGMOD '97.

[16]  Clifford A. Shaffer,et al.  Sieve: A Java-Based Collaborative Visualization Environment , 1997 .

[17]  Steven F. Roth,et al.  Coordinating declarative queries with a direct manipulation data exploration environment , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[18]  Steven F. Roth,et al.  Toward an information visualization workspace: combining multiple means of expression , 1997 .

[19]  Paul Whitney,et al.  Multi-faceted insight through interoperable visual information analysis paradigms , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[20]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[21]  Ben Shneiderman,et al.  Supporting Creativity with Advanced Information-Abundant User Interfaces , 1999 .

[22]  Chris North,et al.  Temporal, geographical and categorical aggregations viewed through coordinated displays: a case study with highway incident data , 1999, NPIVM '99.

[23]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[24]  Robert St. Amant,et al.  ViA: a perceptual visualization assistant , 2000, Applied Imaging Pattern Recognition.

[25]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[26]  Chris North,et al.  Snap-together visualization: can users construct and operate coordinated visualizations? , 2000, Int. J. Hum. Comput. Stud..

[27]  Pat Hanrahan,et al.  Rivet: a flexible environment for computer systems visualization , 2000, SIGGRAPH 2000.

[28]  Pedro Mendes,et al.  ISYS: a decentralized, component-based approach to the integration of heterogeneous bioinformatics resources , 2001, Bioinform..

[29]  Allan Kuchinsky,et al.  Biological storytelling: a software tool for biological information organization based upon narrative structure , 2002, AVI '02.

[30]  Daniel B. Carr,et al.  Some visualization challenges , 2001 .

[31]  Mark Gahegan,et al.  GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization , 2002 .

[32]  Naren Ramakrishnan,et al.  The Emerging Landscape of Bioinformatics Software Systems , 2002, Computer.

[33]  Lenwood S. Heath,et al.  Studying the Functional Genomics of Stress Responses in Loblolly Pine With the Expresso Microarray Experiment Management System , 2002, Comparative and functional genomics.