Function‐in‐layout: a demonstration with bio‐inspired hyperacuity chip

Below 100 nm a new scenario is emerging in VLSI design: floorplanning and function are inherently interrelated. Using mainly local connectivity, wire delay and crosstalk problems are eliminated. A new design methodology is proposed, called function-in-layout, that possesses: regular layout, mainly local connectivity, functional ‘parasitics’. A bio-inspired demonstration is presented, a hyperacuity chip, with 30 ps time difference detection using 0.35 mm complementary metal-oxide semiconductor (CMOS) technology. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Tamás Roska,et al.  Methods for constructing physiologically motivated neuromorphic models in CNNs , 1996, International journal of circuit theory and applications.

[2]  Poki Chen,et al.  A CMOS pulse-shrinking delay element for time interval measurement , 2000 .

[3]  Ángel Rodríguez-Vázquez,et al.  A 0.5µm CMOS 10 6 transistors analog programmable array processor for real–time image processing , 1999 .

[4]  P. Dudek,et al.  A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line , 2000, IEEE Journal of Solid-State Circuits.

[5]  Jorgen Christiansen An integrated CMOS 0.15 ns digital timing generator for TDC's and clock distribution systems , 1995 .

[6]  Joos Vandewalle,et al.  Cellular neural network realizations of neuron models with diverse spiking patterns , 1996 .

[7]  F. Zappa,et al.  Monolithic time-to-digital converter with 20ps resolution , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[8]  J. Kalisz,et al.  Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution , 1997 .

[9]  Ángel Rodríguez-Vázquez,et al.  A 0.8-μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage , 1997, IEEE J. Solid State Circuits.

[10]  Ángel Rodríguez-Vázquez,et al.  ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  M. Konishi,et al.  A circuit for detection of interaural time differences in the brain stem of the barn owl , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  Timo Rahkonen,et al.  A high resolution digital CMOS time-to-digital converter based on nested delay locked loops , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[14]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[15]  J. Kostamovaara,et al.  A low-power CMOS time-to-digital converter , 1995 .

[16]  Tamás Roska,et al.  The CNN universal machine: an analogic array computer , 1993 .

[17]  T. Roska,et al.  Cellular wave computers for brain-like spatial-temporal sensory computing , 2005, IEEE Circuits and Systems Magazine.

[18]  Mark Steven Gorbics,et al.  A high resolution multihit time to digital converter integrated circuit , 1996 .

[19]  Thomas Bräunl Real-Time Image Processing , 2003 .

[20]  I. Fujita,et al.  The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Leon O. Chua,et al.  The analogic cellular neural network as a bionic eye , 1995, Int. J. Circuit Theory Appl..

[22]  Ladislau Bölöni,et al.  Hyperacuity in time: a CNN model of a time-coding pathway of sound localization , 1999 .

[23]  I. Nissinen,et al.  A CMOS time-to-digital converter based on a ring oscillator for a laser radar , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).