Surface reconstruction from stereo images using B-spline parameterization

This paper presents a stereo matching algorithm which combines a dense B-spline representation and an adaptive regularization technique to produce a detailed and stable depth field. We demonstrate that splines may fail in representing some regions in a disparity map due to occlusions. To address this problem, we propose to perform spline representation in object space and directly carry out surface reconstruction from stereo images. The effectiveness of this algorithm has been demonstrated by experimental results on real images.

[1]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[2]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[4]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[5]  Jun Zhou,et al.  Phase matching with multiresolution wavelet transform , 2002, IS&T/SPIE Electronic Imaging.

[6]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[7]  Edward J. Delp,et al.  Discontinuity preserving regularization of inverse visual problems , 1994, IEEE Trans. Syst. Man Cybern..

[8]  Richard Szeliski,et al.  Motion Estimation with Quadtree Splines , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[10]  Sébastien Roy,et al.  Stereo Without Epipolar Lines: A Maximum-Flow Formulation , 1999, International Journal of Computer Vision.

[11]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[12]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[14]  S. S. Sinha,et al.  Surface approximation using weighted splines , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Changming Sun,et al.  Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques , 2002, International Journal of Computer Vision.

[16]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[17]  Lorenzo J. Tardón,et al.  Markov random fields and the disparity gradient constraint applied to stereo correspondence , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[18]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Minglun Gong,et al.  Genetic-Based Stereo Algorithm and Disparity Map Evaluation , 2002, International Journal of Computer Vision.

[20]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[21]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[22]  Wilfried Brauer,et al.  Intensity- and Gradient-Based Stereo Matching Using Hierarchical Gaussian Basis Functions , 1998, IEEE Trans. Pattern Anal. Mach. Intell..