Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.

This paper reviews the recent advances in experiment and theory of the induction of chiroptical effects, primarily circular dichroism (CD), at the plasmonic and excitonic resonances of achiral inorganic nanocrystals (NCs) capped and/or formed with chiral molecules. It also addresses stronger chiroptical effects obtained in intrinsically chiral inorganic nanostructures obtained from growing enantiomeric excess of intrinsically chiral NCs or arranging achiral plasmonic particles in chiral configurations. The accumulated experimental data and theory on various CD induction mechanisms provide an extended set of tools to properly analyze and understand the electromagnetic influence of chiral molecules on inorganic particles and obtain new general insights into the interaction of capping molecules with inorganic NCs. Among the field-induced CD mechanisms developed recently one can name the Coulomb (near-field, dipolar) mechanism for nanostructures much smaller than the wavelength, and for larger nanostructures, the electromagnetic (effective chiral medium), and intrinsically chiral plasmonic mechanisms.

[1]  A. Govorov,et al.  Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Zhiyong Tang,et al.  Chiral inorganic nanoparticles: origin, optical properties and bioapplications. , 2011, Nanoscale.

[3]  Hui Zhang,et al.  Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals , 2012, 1207.0150.

[4]  Zhiyuan Fan,et al.  Chiral nanocrystals: plasmonic spectra and circular dichroism. , 2012, Nano letters.

[5]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[6]  Liguang Xu,et al.  Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. , 2012, Journal of the American Chemical Society.

[7]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[8]  Hui Zhang,et al.  Chiroptical Activity in Silver Cholate Nanostructures Induced by the Formation of Nanoparticle Assemblies , 2013 .

[9]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[10]  K. Nomura Optical Activity in Tellurium , 1960 .

[11]  H. Flack Chiral and Achiral Crystal Structures , 2003 .

[12]  A. Cohen,et al.  Chiroptical Hot Spots in Twisted Nanowire Plasmonic Oscillators , 2013 .

[13]  Jun‐Jie Zhu,et al.  A sonochemical method for the selective synthesis of alpha-HgS and beta-HgS nanoparticles. , 2004, Ultrasonics sonochemistry.

[14]  Younan Xia,et al.  Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds , 2002 .

[15]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[16]  Younan Xia,et al.  One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach , 2002 .

[17]  Tobias Vossmeyer,et al.  CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift , 1994 .

[18]  Jeong‐Myeong Ha,et al.  Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  L. Liz‐Marzán,et al.  Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. , 2011, The journal of physical chemistry letters.

[20]  E. Blanch,et al.  Surface enhanced Raman optical activity (SEROA). , 2008, Chemical Society reviews.

[21]  Yonggang Yang,et al.  Control of helical silica nanostructures using a chiral surfactant , 2006 .

[22]  E. Weiss,et al.  Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems. , 2013, The journal of physical chemistry letters.

[23]  A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods. , 2012, Chemical communications.

[24]  A. Govorov,et al.  Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. , 2013, Angewandte Chemie.

[25]  Yan Gao,et al.  Manipulation of collective optical activity in one-dimensional plasmonic assembly. , 2012, ACS nano.

[26]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[27]  D. Avnir,et al.  On the abundance of chiral crystals. , 2012, Chemical communications.

[28]  Taihua Li,et al.  Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles , 2004 .

[29]  A. Vaskevich,et al.  Sensitivity and optimization of localized surface plasmon resonance transducers. , 2011, ACS nano.

[30]  V. Yannopapas,et al.  Broad-Band Giant Circular Dichroism in Metamaterials of Twisted Chains of Metallic Nanoparticles , 2013 .

[31]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[32]  B. Bosnich The Circular Dichoism of [PtXl4]2-Ion , 1966 .

[33]  Shachar Richter,et al.  Bio-inspired synthesis of chiral silver nanoparticles in mucin glycoprotein--the natural choice. , 2011, Chemical communications.

[34]  S. Risbud,et al.  Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals , 1993 .

[35]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[36]  D. Cui,et al.  Circular dichroism and UV-Vis absorption spectroscopic monitoring of production of chiral silver nanoparticles templated by guanosine 5'-monophosphate. , 2011, The Analyst.

[37]  Rajesh R. Naik,et al.  Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects , 2011 .

[38]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[39]  Yun‐Bao Jiang,et al.  Alternative chiral thiols for preparation of chiral CdS quantum dots covered immediately by achiral thiols. , 2011, Chemical communications.

[40]  K. Záruba,et al.  Supramolecular chirality of cysteine modified silver nanoparticles , 2011 .

[41]  Zhiyuan Fan,et al.  Helical Metal Nanoparticle Assemblies with Defects: Plasmonic Chirality and Circular Dichroism , 2011 .

[42]  S. Tomita,et al.  Plasmonic circular dichroism using Au fine particles and riboflavin , 2012 .

[43]  Nikolay I. Zheludev,et al.  Extrinsic electromagnetic chirality in metamaterials , 2009 .

[44]  C. Noguez,et al.  On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. , 2010, Journal of the American Chemical Society.

[45]  Ben M. Maoz,et al.  Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. , 2012, Nano letters.

[46]  X. Zhang,et al.  Recent advances in transformation optics. , 2012, Nanoscale.

[47]  Lu Han,et al.  Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity , 2012, Nature Communications.

[48]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[49]  A. R. Bungay,et al.  Experimental observation of specular optical activity. , 1993, Physical review letters.

[50]  CrSi(2) hexagonal nanowebs. , 2010, Journal of the American Chemical Society.

[51]  K. Kneipp,et al.  Surface-enhanced Raman optical activity on adenine in silver colloidal solution. , 2006, Analytical chemistry.

[52]  Kevin Robbie,et al.  Advanced techniques for glancing angle deposition , 1998 .

[53]  Harald Giessen,et al.  Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures , 2012 .

[54]  John M Kelly,et al.  Chiral highly luminescent CdS quantum dots. , 2007, Chemical communications.

[55]  Ben M. Maoz,et al.  Amplification of chiroptical activity of chiral biomolecules by surface plasmons. , 2013, Nano letters.

[56]  Baptiste Auguié,et al.  From Individual to Collective Chirality in Metal Nanoparticles* , 2011, Colloidal Synthesis of Plasmonic Nanometals.

[57]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[58]  Alex Zunger,et al.  InP quantum dots: Electronic structure, surface effects, and the redshifted emission , 1997 .

[59]  Joseph M Slocik,et al.  Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. , 2010, Nano letters.

[60]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[61]  Nicholas A Kotov,et al.  Chiral luminescent CdS nano-tetrapods. , 2010, Chemical communications.

[62]  S. Che,et al.  Chirality of Metal Nanoparticles in Chiral Mesoporous Silica , 2012 .

[63]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[64]  S. Margel,et al.  Enantioselective Crystallization on Chiral Polymeric Microspheres , 2007 .

[65]  Susan J. Quinn,et al.  Synthesis and spectroscopic studies of chiral CdSe quantum dots , 2010 .

[66]  G. Markovich,et al.  Synthesis of Chiral Silver Clusters on a DNA Template , 2010 .

[67]  Peijun Zhang,et al.  A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. , 2008, Journal of the American Chemical Society.

[68]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[69]  H. Yao,et al.  Induced Optical Activity in Boronic-Acid-Protected Silver Nanoclusters by Complexation with Chiral Fructose† , 2010 .

[70]  Tsuyoshi Kawai,et al.  Optical activity and chiral memory of thiol-capped CdTe nanocrystals. , 2009, Journal of the American Chemical Society.

[71]  U. Banin,et al.  Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots , 2000 .

[72]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[73]  E. W. Meijer,et al.  Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. , 2012, Journal of the American Chemical Society.

[74]  G. Markovich,et al.  Chiral LigandInduced Circular Dichroism in Excitonic Absorption of Colloidal Quantum Dots , 2012 .

[75]  Yan Gao,et al.  Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. , 2012, Journal of the American Chemical Society.

[76]  H. Fujihara,et al.  Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. , 2003, Journal of the American Chemical Society.

[77]  T. Ohsuna,et al.  Synthesis and characterization of chiral mesoporous silica , 2004, Nature.

[78]  N. Lahav,et al.  Biogenesis: Theories of Life's Origin , 1999 .

[79]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[80]  M. Steigerwald,et al.  Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy , 1989 .

[81]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[82]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[83]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[84]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[85]  C. Noguez,et al.  Optically active metal nanoparticles. , 2009, Chemical Society reviews.

[86]  Rongyao Wang,et al.  Chiral assembly of gold nanorods with collective plasmonic circular dichroism response , 2011 .

[87]  G. R. Olin,et al.  Circular Dichroism of Trigonal Selenium Formed in a Chiral Polymer Matrix , 1977 .

[88]  A. Cohen,et al.  Spectroscopy in sculpted fields , 2009 .

[89]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[90]  T. Ohsuna,et al.  A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures , 2007 .

[91]  Thomas Bürgi,et al.  Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. , 2006, Journal of the American Chemical Society.

[92]  Y. Cho,et al.  Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography , 2010, 10th IEEE International Conference on Nanotechnology.

[93]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[94]  M. Balaz,et al.  Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D- or L-cysteine. , 2013, Chemical communications.

[95]  Xiaoyuan Chen,et al.  Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy , 2012, Nano Research.

[96]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[97]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[98]  V. Kitaev Chiral nanoscale building blocksfrom understanding to applications , 2008 .

[99]  R. Naik,et al.  Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. , 2011, Nano letters.

[100]  L. Addadi,et al.  Growth and Dissolution of Organic Crystals with “Tailor‐Made” Inhibitors—Implications in Stereochemistry and Materials Science , 1985 .

[101]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[102]  Dan Oron,et al.  Second-harmonic generation from a single core/shell quantum dot. , 2009, Small.

[103]  Cristobal Viedma,et al.  Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. , 2004, Physical review letters.

[104]  Y. Gun’ko,et al.  Chiral shells and achiral cores in CdS quantum dots. , 2008, Nano letters.

[105]  Ping Sheng,et al.  Chiral microstructures (spirals) fabrication by holographic lithography. , 2005, Optics express.

[106]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[107]  Andreas Luch,et al.  Silicification of peptide-coated silver nanoparticles--A Biomimetic soft chemistry approach toward chiral hybrid core-shell materials. , 2011, ACS nano.

[108]  I. Yamashita,et al.  Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. , 2010, Angewandte Chemie.

[109]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[110]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[111]  Luis M Liz-Marzán,et al.  Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. , 2011, Angewandte Chemie.

[112]  K. G. Thomas,et al.  Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. , 2010, Journal of the American Chemical Society.

[113]  Kevin E. Shopsowitz,et al.  Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. , 2011, Journal of the American Chemical Society.

[114]  R. Naaman,et al.  Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA , 2011, Science.

[115]  A. Govorov Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity of Metal Nanocrystals. Application to Various Geometries , 2011 .

[116]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[117]  Martin Dressel,et al.  Periodic nanostructures: spatial dispersion mimics chirality. , 2011, Physical review letters.

[118]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[119]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[120]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[121]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[122]  Zhiyong Tang,et al.  Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. , 2010, Journal of the American Chemical Society.

[123]  Yawen Wang,et al.  Emerging chirality in nanoscience. , 2013, Chemical Society reviews.

[124]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[125]  D. Avnir,et al.  Chirality Induction in Bulk Gold and Silver , 2007 .

[126]  D. Szwarcman,et al.  Size dependence of chiroptical activity in colloidal quantum dots. , 2011, ACS nano.

[127]  Aurelien Drezet,et al.  Optical chirality without optical activity: How surface plasmons give a twist to light. , 2008, Optics express.

[128]  A. Mews,et al.  Fluorescence decay time of single semiconductor nanocrystals. , 2002, Physical review letters.

[129]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[130]  E. Weiss,et al.  Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. , 2010, ACS nano.

[131]  A. Paul Alivisatos,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[132]  E. Hendry,et al.  Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. , 2012, Nano letters.

[133]  M. Valcárcel,et al.  Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. , 2009, Analytical chemistry.

[134]  A. Zunger,et al.  Temperature dependence of excitonic radiative decay in CdSe quantum dots: the role of surface hole traps. , 2005, Nano letters.

[135]  J. Ying,et al.  Entropy‐Driven Helical Mesostructure Formation with Achiral Cationic Surfactant Templates , 2007 .

[136]  A. Govorov,et al.  Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. , 2010, Nano letters.

[137]  E. Li,et al.  Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. , 2012, ACS nano.

[138]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[139]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.