Dual state-parameter estimation of hydrological models using ensemble Kalman filter

Hydrologic models are twofold: models for understanding physical processes and models for prediction. This study addresses the latter, which modelers use to predict, for example, streamflow at some future time given knowledge of the current state of the system and model parameters. In this respect, good estimates of the parameters and state variables are needed to enable the model to generate accurate forecasts. In this paper, a dual state–parameter estimation approach is presented based on the Ensemble Kalman Filter (EnKF) for sequential estimation of both parameters and state variables of a hydrologic model. A systematic approach for identification of the perturbation factors used for ensemble generation and for selection of ensemble size is discussed. The dual EnKF methodology introduces a number of novel features: (1) both model states and parameters can be estimated simultaneously; (2) the algorithm is recursive and therefore does not require storage of all past information, as is the case in the batch calibration procedures; and (3) the various sources of uncertainties can be properly addressed, including input, output, and parameter uncertainties. The applicability and usefulness of the dual EnKF approach for ensemble streamflow forecasting is demonstrated using a conceptual rainfall-runoff model. 2004 Elsevier Ltd. All rights reserved.

[1]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[2]  Eric A. Wan,et al.  Nonlinear estimation and modeling of noisy time series by dual kalman filtering methods , 2000 .

[3]  Michael A. West Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .

[4]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[5]  Soroosh Sorooshian,et al.  A framework for development and application of hydrological models , 2001, Hydrology and Earth System Sciences.

[6]  Peter K. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty , 1980 .

[7]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[8]  Peter Jan van Leeuwen,et al.  Comment on ''Data Assimilation Using an Ensemble Kalman Filter Technique'' , 1999 .

[9]  Dennis McLaughlin,et al.  An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering , 2002 .

[10]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[11]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[12]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[13]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[14]  Dennis McLaughlin,et al.  Recent developments in hydrologic data assimilation , 1995 .

[15]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[16]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[17]  Peter A. Troch,et al.  Catchment-scale hydrological modeling and data assimilation , 2003 .

[18]  Peter C Young,et al.  Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  P. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results , 1980 .

[20]  Diane M. McKnight,et al.  Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids , 2003 .

[21]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[22]  I. Rodríguez‐Iturbe,et al.  Random Functions and Hydrology , 1984 .

[23]  Fang Liu Bayesian Time Series: Analysis Methods Using Simulation-Based Computation , 2000 .

[24]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .

[25]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[26]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[27]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[28]  George Kuczera,et al.  Assessment of hydrologic parameter uncertainty and the worth of multiresponse data , 1998 .

[29]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[30]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[31]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[32]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[33]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[34]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[35]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[36]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[37]  George Kuczera,et al.  On the validity of first-order prediction limits for conceptual hydrologic models , 1988 .

[38]  Peter K. Kitanidis,et al.  Adaptive filtering through detection of isolated transient errors in rainfall‐runoff models , 1980 .

[39]  James M. Murphy,et al.  The impact of ensemble forecasts on predictability , 1988 .

[40]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[41]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .