On the complexity of the Descartes method when using approximate arithmetic
暂无分享,去创建一个
[1] Arnold Schönhage,et al. Quasi-GCD computations , 1985, J. Complex..
[2] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[3] Bernard Mourrain,et al. Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.
[4] Michael Sagraloff,et al. An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks , 2010, ALENEX.
[5] Chee-Keng Yap,et al. Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.
[6] Kurt Mehlhorn,et al. Faster algorithms for computing Hong's bound on absolute positiveness , 2010, J. Symb. Comput..
[7] Michael Sagraloff,et al. A worst-case bound for topology computation of algebraic curves , 2011, J. Symb. Comput..
[8] Arno Eigenwillig,et al. Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .
[9] Michael Sagraloff,et al. On the Complexity of Real Root Isolation , 2010, ArXiv.
[10] Victor Y. Pan,et al. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..
[11] A. Rényi,et al. On the zeros of polynomials , 1952 .
[12] Alkiviadis G. Akritas,et al. A Comparative Study of Two Real Root Isolation Methods , 2005 .
[13] Ioannis Z. Emiris,et al. On the complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..
[14] Jean-Claude Yakoubsohn,et al. Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions , 2005, J. Complex..
[15] Felix Krahmer,et al. SqFreeEVAL: An (almost) optimal real-root isolation algorithm , 2011, J. Symb. Comput..
[16] Fabrice Rouillier,et al. Bernstein's basis and real root isolation , 2004 .
[17] Michael Sagraloff,et al. Efficient real root approximation , 2011, ISSAC '11.
[18] Victor Y. Pan,et al. Numerical methods for roots of polynomials , 2007 .
[19] Edward D. Kim,et al. Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .
[20] Kurt Mehlhorn,et al. A deterministic algorithm for isolating real roots of a real polynomial , 2011, J. Symb. Comput..
[21] Kurt Mehlhorn,et al. New bounds for the Descartes method , 2005, SIGS.
[22] Arnold Schönhage,et al. The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .
[23] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[24] Chee-Keng Yap,et al. A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.
[25] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .
[26] A. Ostrowski. Note on Vincent's Theorem , 1950 .
[27] N. Obreshkov. Zeros of polynomials , 2003 .
[28] Victor Y. Pan,et al. Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..
[29] Elias P. Tsigaridas,et al. Univariate real root isolation in an extension field , 2011, ISSAC '11.
[30] Giuseppe Fiorentino,et al. Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.
[31] Jeremy R. Johnson,et al. Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.
[32] Jürgen Gerhard,et al. Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.
[33] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[34] Michael Sagraloff,et al. A General Approach to Isolating Roots of a Bitstream Polynomial , 2010, Math. Comput. Sci..
[35] Elias P. Tsigaridas,et al. Univariate real root isolation in multiple extension fields , 2012, ISSAC.
[36] Matsusaburô Fujtwara. Über die Wurzeln der algebraischen Gleichungen , 1915 .
[37] Arno Eigenwillig. Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .
[38] Kurt Mehlhorn,et al. From approximate factorization to root isolation , 2013, ISSAC '13.
[39] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[40] Michael Sagraloff,et al. When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.
[41] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.