On the complexity of the Descartes method when using approximate arithmetic

Abstract In this paper, we introduce a variant of the Descartes method to isolate the real roots of a square-free polynomial F ( x ) = ∑ i = 0 n A i x i with arbitrary real coefficients. It is assumed that each coefficient of F can be approximated to any specified error bound. Our algorithm uses approximate arithmetic only, nevertheless, it is certified, complete and deterministic. We further provide a bound on the complexity of our method which exclusively depends on the geometry of the roots and not on the complexity of the coefficients of F. For the special case, where F is a polynomial of degree n with integer coefficients of maximal bitsize τ, our bound on the bit complexity writes as O ˜ ( n 3 τ 2 ) . Compared to the complexity of the classical Descartes method from Collins and Akritas (based on ideas dating back to Vincent), which uses exact rational arithmetic, this constitutes an improvement by a factor of n. The improvement mainly stems from the fact that the maximal precision that is needed for isolating the roots of F is by a factor n lower than the precision needed when using exact arithmetic.

[1]  Arnold Schönhage,et al.  Quasi-GCD computations , 1985, J. Complex..

[2]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[3]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[4]  Michael Sagraloff,et al.  An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks , 2010, ALENEX.

[5]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[6]  Kurt Mehlhorn,et al.  Faster algorithms for computing Hong's bound on absolute positiveness , 2010, J. Symb. Comput..

[7]  Michael Sagraloff,et al.  A worst-case bound for topology computation of algebraic curves , 2011, J. Symb. Comput..

[8]  Arno Eigenwillig,et al.  Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .

[9]  Michael Sagraloff,et al.  On the Complexity of Real Root Isolation , 2010, ArXiv.

[10]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[11]  A. Rényi,et al.  On the zeros of polynomials , 1952 .

[12]  Alkiviadis G. Akritas,et al.  A Comparative Study of Two Real Root Isolation Methods , 2005 .

[13]  Ioannis Z. Emiris,et al.  On the complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..

[14]  Jean-Claude Yakoubsohn,et al.  Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions , 2005, J. Complex..

[15]  Felix Krahmer,et al.  SqFreeEVAL: An (almost) optimal real-root isolation algorithm , 2011, J. Symb. Comput..

[16]  Fabrice Rouillier,et al.  Bernstein's basis and real root isolation , 2004 .

[17]  Michael Sagraloff,et al.  Efficient real root approximation , 2011, ISSAC '11.

[18]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[19]  Edward D. Kim,et al.  Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .

[20]  Kurt Mehlhorn,et al.  A deterministic algorithm for isolating real roots of a real polynomial , 2011, J. Symb. Comput..

[21]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[22]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[23]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[24]  Chee-Keng Yap,et al.  A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.

[25]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[26]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[27]  N. Obreshkov Zeros of polynomials , 2003 .

[28]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[29]  Elias P. Tsigaridas,et al.  Univariate real root isolation in an extension field , 2011, ISSAC '11.

[30]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[31]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[32]  Jürgen Gerhard,et al.  Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.

[33]  Joachim von zur Gathen,et al.  Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.

[34]  Michael Sagraloff,et al.  A General Approach to Isolating Roots of a Bitstream Polynomial , 2010, Math. Comput. Sci..

[35]  Elias P. Tsigaridas,et al.  Univariate real root isolation in multiple extension fields , 2012, ISSAC.

[36]  Matsusaburô Fujtwara Über die Wurzeln der algebraischen Gleichungen , 1915 .

[37]  Arno Eigenwillig Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .

[38]  Kurt Mehlhorn,et al.  From approximate factorization to root isolation , 2013, ISSAC '13.

[39]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[40]  Michael Sagraloff,et al.  When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.

[41]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.