Immunosuppressive treatment protects against angiotensin II-induced renal damage.

[1]  M. Runge,et al.  Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-κB (NF-κB) transcription factor , 2004, Molecular and Cellular Biochemistry.

[2]  M. Zenke,et al.  Differentiation of human antigen-presenting dendritic cells from CD34+ hematopoietic stem cells in vitro. , 2003, Methods in molecular biology.

[3]  J. Bernhagen,et al.  Expression of Macrophage Migration Inhibitory Factor in Different Stages of Human Atherosclerosis , 2002, Circulation.

[4]  M. Yáñez-Mó,et al.  Effects of mycophenolate mofetil in mercury-induced autoimmune nephritis. , 2002, Journal of the American Society of Nephrology : JASN.

[5]  A. Enk,et al.  CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. , 2002, Blood.

[6]  M. Gilliet,et al.  Generation of Human CD8 T Regulatory Cells by CD40 Ligand–activated Plasmacytoid Dendritic Cells , 2002, The Journal of experimental medicine.

[7]  R. Niimi,et al.  Suppression of endotoxin-induced renal tumor necrosis factor-alpha and interleukin-6 mRNA by renin-angiotensin system inhibitors. , 2002, Japanese journal of pharmacology.

[8]  F. Luft Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases , 2002, Current opinion in nephrology and hypertension.

[9]  L. Moldawer,et al.  Interleukin-10: A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. , 2002, Critical care medicine.

[10]  T. Calandra,et al.  MIF regulates innate immune responses through modulation of Toll-like receptor 4 , 2001, Nature.

[11]  J. Egido,et al.  Role of the renin-angiotensin system in vascular diseases: expanding the field. , 2001, Hypertension.

[12]  R. Largo,et al.  Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. , 2001, Kidney international.

[13]  J. Cidlowski,et al.  Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: A mechanism for the generation of glucocorticoid resistance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  B. Rodriguez-Iturbe,et al.  Role of immunocompetent cells in nonimmune renal diseases. , 2001, Kidney international.

[15]  Friedrich C. Luft,et al.  Endothelial Dysfunction and Xanthine Oxidoreductase Activity in Rats With Human Renin and Angiotensinogen Genes , 2001, Hypertension.

[16]  R. Busse,et al.  Endothelium-Derived Hyperpolarizing Factor Synthase (Cytochrome P450 2C9) Is a Functionally Significant Source of Reactive Oxygen Species in Coronary Arteries , 2001, Circulation research.

[17]  C. Lau,et al.  De Novo Expression of Macrophage Migration Inhibitory Factor in Atherogenesis in Rabbits , 2000, Circulation research.

[18]  D. Ganten,et al.  Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. , 2000, The American journal of pathology.

[19]  S. Klahr,et al.  The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. , 2000, Kidney international. Supplement.

[20]  W Kübler,et al.  Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[21]  I. L. Noronha,et al.  Combined mycophenolate mofetil and losartan therapy arrests established injury in the remnant kidney. , 2000, Journal of the American Society of Nephrology : JASN.

[22]  D. Ganten,et al.  Blood pressure-independent effects in rats with human renin and angiotensinogen genes. , 2000, Hypertension.

[23]  D. Ganten,et al.  NF-κB Inhibition Ameliorates Angiotensin II–Induced Inflammatory Damage in Rats , 2000 .

[24]  D. Ganten,et al.  NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. , 2000, Hypertension.

[25]  M. Runge,et al.  Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. , 2000, Molecular and cellular biochemistry.

[26]  M. Karin,et al.  Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. , 2000, Annual review of immunology.

[27]  D. Ganten,et al.  Cyclosporin A protects against angiotensin II-induced end-organ damage in double transgenic rats harboring human renin and angiotensinogen genes. , 2000, Hypertension.

[28]  P. Mannon,et al.  Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. , 1999, The Journal of clinical investigation.

[29]  E. Schiffrin,et al.  Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. , 1999, Hypertension.

[30]  D. Ganten,et al.  Angiotensin-converting enzyme inhibition and AT1 receptor blockade modify the pressure-natriuresis relationship by additive mechanisms in rats with human renin and angiotensinogen genes. , 1999, Journal of the American Society of Nephrology : JASN.

[31]  Michael Karin,et al.  Is NF‐κB the sensor of oxidative stress? , 1999 .

[32]  G. Wallukat,et al.  Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. , 1999, The Journal of clinical investigation.

[33]  S. Hudak,et al.  The CC Chemokine Receptor-7 Ligands 6Ckine and Macrophage Inflammatory Protein-3β Are Potent Chemoattractants for In Vitro- and In Vivo-Derived Dendritic Cells , 1999, The Journal of Immunology.

[34]  S. Schwartz,et al.  Salt-sensitive hypertension develops after short-term exposure to Angiotensin II. , 1999, Hypertension.

[35]  M. Cotten,et al.  Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. , 1999, Human gene therapy.

[36]  M. Karin,et al.  Is NF-kappaB the sensor of oxidative stress? , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  D. Ganten,et al.  Hypertension-induced end-organ damage : A new transgenic approach to an old problem. , 1999, Hypertension.

[38]  D. Ganten,et al.  Pressure-natriuresis and -diuresis in transgenic rats harboring both human renin and human angiotensinogen genes. , 1998, Journal of the American Society of Nephrology : JASN.

[39]  E. Fleck,et al.  Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. , 1997, Circulation research.

[40]  M. Ushio-Fukai,et al.  p22phox Is a Critical Component of the Superoxide-generating NADH/NADPH Oxidase System and Regulates Angiotensin IIinduced Hypertrophy in Vascular Smooth Muscle Cells* , 1996, The Journal of Biological Chemistry.

[41]  I. Adcock,et al.  Tumour necrosis factor alpha causes retention of activated glucocorticoid receptor within the cytoplasm of A549 cells. , 1996, Biochemical and biophysical research communications.

[42]  F. Bach,et al.  Glucocorticoid-mediated Repression of NFκB Activity in Endothelial Cells Does Not Involve Induction of IκBα Synthesis* , 1996, The Journal of Biological Chemistry.

[43]  R. Bucala,et al.  An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Brasier,et al.  Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator. , 1996, Hypertension.

[45]  F. Bach,et al.  Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of IkappaBalpha synthesis. , 1996, The Journal of biological chemistry.

[46]  M. Wolzt,et al.  Influence of angiotensin II on circulating adhesion molecules and blood leukocyte count in vivo. , 1996, Canadian journal of physiology and pharmacology.

[47]  A. Baldwin,et al.  Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids , 1995, Science.

[48]  A. Baldwin,et al.  Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. , 1995, Science.

[49]  F. Luft,et al.  Early interstitial changes in hypertension-induced renal injury. , 1993, Hypertension.

[50]  R K Craig,et al.  Methods in molecular medicine. , 1987, British medical journal.

[51]  M. Seeds,et al.  Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. , 1983, Journal of immunology.

[52]  B. Bloom,et al.  RELATION OF THE MIGRATION INHIBITORY FACTOR (MIF) TO DELAYED‐TYPE HYPERSENSITIVITY REACTIONS , 1970, Annals of the New York Academy of Sciences.