Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes

[1]  J. M. Alexander AN APPROXIMATE ANALYSIS OF THE COLLAPSE OF THIN CYLINDRICAL SHELLS UNDER AXIAL LOADING , 1960 .

[2]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[3]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[4]  W. Abramowicz,et al.  Dynamic axial crushing of square tubes , 1984 .

[5]  S. Reid,et al.  Static and dynamic axial crushing of foam-filled sheet metal tubes , 1986 .

[6]  Norman Jones,et al.  Dynamic progressive buckling of circular and square tubes , 1986 .

[7]  W. Abramowicz,et al.  Axial crushing of foam-filled columns , 1988 .

[8]  H. Schreyer,et al.  ANISOTROPIC PLASTICITY MODEL FOR FOAMS AND HONEYCOMBS , 1994 .

[9]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[10]  O. Hopperstad,et al.  Static and dynamic axial crushing of square thin-walled aluminium extrusions , 1996 .

[11]  Ronald E. Miller A continuum plasticity model for the constitutive and indentation behaviour of foamed metals , 2000 .

[12]  T. Wierzbicki,et al.  Experimental and numerical studies of foam-filled sections , 2000 .

[13]  N. Fleck,et al.  Isotropic constitutive models for metallic foams , 2000 .

[14]  F. Rammerstorfer,et al.  Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam , 2000 .

[15]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[16]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  O. Hopperstad,et al.  Validation of constitutive models applicable to aluminium foams , 2002 .

[19]  Heung-Soo Kim,et al.  New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency , 2002 .

[20]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[21]  O. Hopperstad,et al.  Constitutive modeling of aluminum foam including fracture and statistical variation of density , 2003 .

[22]  O. Hopperstad,et al.  Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study , 2004 .

[23]  Masoud Rais-Rohani,et al.  A comparative study of metamodeling methods for multiobjective crashworthiness optimization , 2005 .

[24]  H. Kavi,et al.  Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient , 2006 .

[25]  G. Cheng,et al.  Theoretical prediction and numerical simulation of multi-cell square thin-walled structures , 2006 .

[26]  A. Toksoy,et al.  Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: Experimental and numerical analysis , 2006 .

[27]  G. Cheng,et al.  A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns , 2007 .

[28]  Adnan M. Al-Smadi,et al.  Space partitioning in engineering design via metamodel acceptance score distribution , 2007, Engineering with Computers.

[29]  H. R. Zarei,et al.  Optimization of the foam-filled aluminum tubes for crush box application , 2008 .

[30]  Baojin Wang,et al.  Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core , 2008 .

[31]  Saeed Ziaei-Rad,et al.  Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings , 2008 .

[32]  Edmundas Kazimieras Zavadskas,et al.  Multicriteria selection of project managers by applying grey criteria , 2008 .

[33]  David P. Thambiratnam,et al.  Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading , 2009 .

[34]  Wei Li,et al.  Crashworthiness design for foam filled thin-wall structures , 2009 .

[35]  S. Baskar,et al.  NSGA-II algorithm for multi-objective generation expansion planning problem , 2009 .

[36]  Shiwei Zhou,et al.  Crashworthiness design for functionally graded foam-filled thin-walled structures , 2010 .

[37]  H. Zarei,et al.  Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes , 2011 .

[38]  Prasenjit Chatterjee,et al.  Materials selection using complex proportional assessment and evaluation of mixed data methods , 2011 .

[39]  Zhibin Li,et al.  Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading , 2012 .

[40]  Qing Li,et al.  Optimization of foam-filled bitubal structures for crashworthiness criteria , 2012 .

[41]  Prasenjit Chatterjee,et al.  Material selection using preferential ranking methods , 2012 .

[42]  Guangyao Li,et al.  Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models , 2013 .

[43]  A. Hamouda,et al.  Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces , 2013 .

[44]  H. Gedikli,et al.  Crashworthiness optimization of foam-filled tailor-welded tube using coupled finite element and smooth particle hydrodynamics method , 2013 .

[45]  G. Wen,et al.  Multiobjective crashworthiness optimization design of functionally graded foam-filled tapered tube based on dynamic ensemble metamodel , 2014 .

[46]  Qing Li,et al.  Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness , 2014 .