Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes

We provide a general framework to describe cooling of a micromechanical oscillator to its quantum ground state by means of radiation-pressure coupling with a driven optical cavity. We apply it to two experimentally realized schemes, back-action cooling via a detuned cavity and cold-damping quantum-feedback cooling, and we determine the ultimate quantum limits of both schemes for the full parameter range of a stable cavity. While both allow one to reach the oscillator’s quantum ground state, we find that back-action cooling is more efficient in the good cavity limit, i.e., when the cavity bandwidth is smaller than the mechanical frequency, while cold damping is more suitable for the bad cavity limit. The results of previous treatments are recovered as limiting cases of specific parameter regimes.

[1]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[3]  A. Sopczak Neutral Higgs boson mass constraints in the minimal supersymmetric standard model from searches in $\rm e^+e^-$ collisions , 1999 .

[4]  Daniel Sigg,et al.  Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. , 2007, Physical review letters.

[5]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[6]  A. Heidmann,et al.  Quantum limits of cold damping with optomechanical coupling , 2001, quant-ph/0107138.

[7]  Stefano Mancini,et al.  Macroscopic mechanical oscillators at the quantum limit through optomechanical cooling , 2003 .

[8]  J. G. Harris,et al.  Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: optical characterization and laser cooling. , 2006, The Review of scientific instruments.

[9]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[10]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[11]  Stefano Mancini,et al.  Scheme for teleportation of quantum states onto a mechanical resonator. , 2003, Physical review letters.

[12]  J.M.W. Milatz,et al.  The reduction in the brownian motion of electrometers , 1953 .

[13]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[14]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[15]  Stefano Mancini,et al.  Mirror quiescence and high-sensitivity position measurements with feedback , 2001, quant-ph/0111067.

[16]  P. Meystre,et al.  Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror. , 2007, Physical review letters.

[17]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[18]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[19]  P. Meystre,et al.  Trapping and cooling a mirror to its quantum mechanical ground state. , 2007, Physical review letters.

[20]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[21]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[22]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[24]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[25]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[26]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[27]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[28]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[29]  Peter Fritschel,et al.  Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[30]  Marco Lops,et al.  The VIRGO Project: A wide band antenna for gravitational wave detection , 1990 .

[31]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[32]  Dirk Bouwmeester,et al.  Sub-kelvin optical cooling of a micromechanical resonator , 2006, Nature.

[33]  M. Pinard,et al.  Self-cooling of a movable mirror to the ground state using radiation pressure , 2007, 0707.2038.

[34]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[35]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[36]  The brownian motion of electrometers , 1953 .

[37]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[38]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[39]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .