Diffusion Nets

Article history: Received 25 June 2015 Received in revised form 25 January 2017 Accepted 23 August 2017 Available online 31 August 2017 Communicated by Charles K. Chui

[1]  Qing Wang,et al.  Using Diffusion Geometric Coordinates for Hyperspectral Imagery Representation , 2009, IEEE Geoscience and Remote Sensing Letters.

[2]  Israel Cohen,et al.  Out-of-sample extension of band-limited functions on homogeneous manifolds using diffusion maps , 2015, Signal Process..

[3]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[5]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[6]  Quoc V. Le,et al.  On optimization methods for deep learning , 2011, ICML.

[7]  Ronald R. Coifman,et al.  Supervised Graph-Based Processing for Sequential Transient Interference Suppression , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[8]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[9]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[10]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[11]  Ronald R. Coifman,et al.  Data Fusion and Multicue Data Matching by Diffusion Maps , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  R. Coifman,et al.  Non-linear independent component analysis with diffusion maps , 2008 .

[13]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Guillermo Sapiro,et al.  Connecting the Out-of-Sample and Pre-Image Problems in Kernel Methods , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Gil David,et al.  Hierarchical data organization , clustering and denoising via localized diffusion folders , 2011 .

[16]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[17]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[18]  Yoel Shkolnisky,et al.  Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising , 2009, SIAM J. Imaging Sci..

[19]  Zeev Farbman,et al.  Diffusion maps for edge-aware image editing , 2010, ACM Trans. Graph..

[20]  Kenji Kawaguchi,et al.  Deep Learning without Poor Local Minima , 2016, NIPS.

[21]  Ronen Talmon,et al.  Empirical intrinsic geometry for nonlinear modeling and time series filtering , 2013, Proceedings of the National Academy of Sciences.

[22]  R. Coifman,et al.  Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions , 2006 .

[23]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[24]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[25]  Lin Sun,et al.  Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold , 2015, Neurocomputing.

[26]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[27]  Israel Cohen,et al.  Multiscale Anomaly Detection Using Diffusion Maps , 2013, IEEE Journal of Selected Topics in Signal Processing.

[28]  Amir Averbuch,et al.  PCA-Based Out-of-Sample Extension for Dimensionality Reduction , 2015, 1511.00831.

[29]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[33]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[34]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[35]  Vladimir Rokhlin,et al.  Randomized approximate nearest neighbors algorithm , 2011, Proceedings of the National Academy of Sciences.

[36]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Hierarchical Data Organization , 2009, Encyclopedia of Database Systems.

[38]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[39]  Yosi Keller,et al.  Image Completion by Diffusion Maps and Spectral Relaxation , 2013, IEEE Transactions on Image Processing.

[40]  Ronald R. Coifman,et al.  Texture separation via a reference set , 2014 .

[41]  Ronald R. Coifman,et al.  Heterogeneous Datasets Representation and Learning using Diffusion Maps and Laplacian Pyramids , 2012, SDM.

[42]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[43]  Israel Cohen,et al.  Single-Channel Transient Interference Suppression With Diffusion Maps , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[44]  Ronald R. Coifman,et al.  Diffusion maps for changing data , 2012, ArXiv.

[45]  Israel Cohen,et al.  Graph-Based Supervised Automatic Target Detection , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[46]  José R. Dorronsoro,et al.  Auto-adaptative Laplacian Pyramids for high-dimensional data analysis , 2013, ArXiv.

[47]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[48]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[49]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.